Experimental Astronomy

, Volume 40, Issue 2–3, pp 813–839 | Cite as

EChO payload electronics architecture and SW design

  • M. Focardi
  • A. M. Di Giorgio
  • M. Farina
  • M. Pancrazzi
  • R. Ottensamer
  • T. L. Lim
  • S. Pezzuto
  • G. Micela
  • E. Pace


EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 μ m to 11.0 μ m. The baseline design includes the goal wavelength extension to 0.4 μ m while an optional LWIR module extends the range to the goal wavelength of 16.0 μ m. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.


Exoplanets atmospheres Integrated spectrophotometer Payload electronics On board application SW 



We acknowledge the financial contribution by the Italian Space Agency (ASI) in the framework of the ASI-INAF agreement I/022/12/0 for the Partecipazione Italiana allo Studio di Fattibilità della Missione EChO, the overall partners of the EChO Consortium coordinated by the UK Rutherford Appleton Laboratory (RAL) and the European Space Agency (ESA) for its invaluable support to the development of the Assessment Phase mission design.


  1. 1.
    Tinetti, G. et al.: EChO exoplanet characterisation observatory. Exp. Astron. (2012)Google Scholar
  2. 2.
    Tinetti, G. et al.: The Science of EChO. Proc. IAU Symp. No, 276 (2010)Google Scholar
  3. 3.
    EChO Yellow Book, ESA SRE 2013 2 EChO, (2013)Google Scholar
  4. 4.
    Adriani, A., Oliva, E., Piccioni, G., Pace, E., Focardi, M., Di Turi, C. , Filacchione, G., Pancrazzi, M., Tozzi, A., Ferruzzi, D., Del Vecchio, C., Capaccioni, F., Micela, G.: The visible and near infrared (VNIR) spectrometer of EChO. SPIE Proc. 8442 (2012)Google Scholar
  5. 5.
    Adriani, A., Bellucci, G., Oliva, E., Gambicorti, L., Piccioni, G., Pace, E., Focardi, M., Filacchione, G., Pancrazzi, M., Tozzi, A., Del Vecchio, C., Micela, G.: The EChO visible and near infrared spectrometer. In: European Planetary Science Congress 2013, London, 8–13 September 2013Google Scholar
  6. 6.
    Focardi, M., Pancrazzi, M., Di Giorgio, A. M., Pezzuto, S., Micela, G., Pace, E.: The exoplanet characterization observatory (EChO) Payload Electronics,. SPIE Proc. 8442, 84422T-1 (2012)CrossRefADSGoogle Scholar
  7. 7.
    Focardi, M., Farina, M., Pancrazzi, M., Ottensamer, R., Di Giorgio, A.M., Pace, E.: Technical Note ECHO-TN-0003. INAF 1(01) (2013)Google Scholar
  8. 8.
    Hale, D. et al.: Low-Noise IR Wavefront Sensing with a Teledyne HxRG, DfA Garching slides, Garching (2009)Google Scholar
  9. 9.
    Teledyne: Teledyne Imaging Sensors HAWAII-2RG Visible and Infrared Focal Plane Array, Teledyne datasheetGoogle Scholar
  10. 10.
    Bai, Y., et al.: Teledyne imaging sensors: Silicon CMOS imaging technologies for x-ray, UV, visible and near infrared. In: SPIE Proceedings, Conference on Astronomical Instrumentation. Marseille, France (2008)Google Scholar
  11. 11.
    MacDougal, M. H., Beletic, J. E., et al. (eds.): Overview of Rockwell Scientific Imaging Technologies, pp. 403–410. Scientific Detectors for Astronomy (2005)Google Scholar
  12. 12.
    Beletic, J. W.: Scientific Detectors for Astronomy, Slides Presentation. Arcetri Firenze (2008)Google Scholar
  13. 13.
    Beletic, J. W.: Teledyne imaging sensors: infrared imaging technologies for astronomy and civil space. In: SPIE Proceedings, Conference on Astronomical Instrumentation. Marseille, France (2008)Google Scholar
  14. 14.
    Dorn, R. J et al.: SIDECAR ASIC @ ESO, SPIE Proc., San Diego 27 June - 02 July (2010)Google Scholar
  15. 15.
    Teledyne: Teledyne Imaging Sensors SIDECAR ASIC Development Kit and Focal Plane Electronics, Teledyne datasheetGoogle Scholar
  16. 16.
    Beletic, J. W. Update, Teledyne Detector, Scientific Detector Workshop 2013. Firenze, Italy (2013)Google Scholar
  17. 17.
    Loose, M. et al.: SIDECAR ASIC - control electronics on a chip. In: Beletic, J.E. et al. (eds.) Scientific Detectors for Astronomy pp. 699–706 (2005)Google Scholar
  18. 18.
    Loose, M., et al.: Space qualification and performance results of the SIDECAR ASIC. SPIE Proc. 6265, 62652J (2006)CrossRefGoogle Scholar
  19. 19.
    Ottensamer, R. et al.: EChO-TN-0001-VIE FGS 100913, (2013)Google Scholar
  20. 20.
    Morgante, G., Terenzi, L.: Technical Note ECHO-TN-0004-INAF, Issue 1.0 (2013)Google Scholar
  21. 21.
    Liu, S. J., Molinari, S., Di Giorgio, A. M., Pezzuto, S., Sidher, S., Cerulli-Irelli, P., King, K.: Herschel-SPIRE satellite instrument: configurable On-Board Software for autonomous and realtime operation, . Proc. SPIE 8442, 844245–1 (2012)CrossRefGoogle Scholar
  22. 22.
    Bonoli, et al.: An end-to-end approach to the EUCLID NISP on-board preprocessing operations. Tests and latest results. SPIE Proc., 8442 (2012)Google Scholar
  23. 23.
    Garnett, J. D., Forrest, W. J.: Near-infrared arrays for SIRTF, the space infrared telescope facility. SPIE Proc. 1946, 395 (1993)CrossRefADSGoogle Scholar
  24. 24.
    Offenberg, et al.: Validation of up-the-ramp sampling with cosmic ray rejection on IR detectors. PASP 113, 240 (2001)CrossRefADSGoogle Scholar
  25. 25.
    Raucher, B., et al.: Detectors for the JWST near-IR spectrograph. I. Readout mode, noise model and calibration considerations. PASP 119, 768 (2007)CrossRefADSGoogle Scholar
  26. 26.
    Di Giorgio, A. M., Bastia, P., Liu, S. J., Giusi, G., Scaramella, R., Cropper, M., Cole, R., James, A., Amiaux, J., Mellier, Y.: The command and data processing unit of the euclid visible imager: impact of the data compression needs on the unit design. Proc. SPIE 8442, 844233–7 (2012)CrossRefGoogle Scholar
  27. 27.
    Di Giorgio, A. M., Cerulli-Irelli, P., Nuzzolo, F., Orfei, R., Spinoglio, Liu, S. J, Saraceno, P.: FPGA based control system for space instrumentation. Proc. SPIE 7019, 70191I-1 (2008)CrossRefADSGoogle Scholar
  28. 28.
    Farina, M., Di Giorgio, A. M., Focardi, M.: Noise evaluation for ECHO VNIR detectors, Technical Note ECHO-TN-0002-INAF, Issue 0.3 (2013)Google Scholar
  29. 29.
    Fixsen et al.: Cosmic-Ray rejection and Readout Efficiency for Large-Area Arrays. PASP 112, 1350–1359 (2000)CrossRefADSGoogle Scholar
  30. 30.
    Rauscher, et al.: Cosmic Ray Management on NGST 1: The effect of Cosmic Rays on Near Infrared Imaging Exposure Time, STScI-NGST-R-0003A, (200)Google Scholar
  31. 31.
    Offenberg, et al.: Memory-Efficient Up-the-Ramp Processing with Cosmic-Ray Rejection. PASP 117, 94 (2005)CrossRefADSGoogle Scholar
  32. 32.
    Welch, T. A.: A technique for high performance data compression. IEEE Comput. 17, 6 (1984)CrossRefGoogle Scholar
  33. 33.
    Langdon, G. G. Jr.: An introduction to arithmetic coding. IBM J. Res. Dev. 28, 2–3 (1984)CrossRefGoogle Scholar
  34. 34.
    CCSDS 121.0-B-1: Lossless Data Compression, Blue Book, Issue 1,5, (1997)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. Focardi
    • 1
  • A. M. Di Giorgio
    • 2
  • M. Farina
    • 2
    • 5
  • M. Pancrazzi
    • 1
  • R. Ottensamer
    • 3
  • T. L. Lim
    • 4
  • S. Pezzuto
    • 2
  • G. Micela
    • 5
  • E. Pace
    • 6
  1. 1.INAF, Osservatorio Astrofisico di ArcetriFirenzeItaly
  2. 2.INAF, Istituto di Astrofisica e Planetologia SpazialeRomeItaly
  3. 3.Institut für Astrophysik TürkenschanzstrUniversität WienWienAustria
  4. 4.RAL SpaceRutherford Appleton LaboratoryOxfordUK
  5. 5.INAF, Osservatorio Astronomico di PalermoPalermoItaly
  6. 6.Dipartimento di Fisica e AstronomiaUniversità degli Studi di FirenzeFirenzeItaly

Personalised recommendations