Advertisement

Experimental Astronomy

, Volume 38, Issue 1–2, pp 249–330 | Cite as

The PLATO 2.0 mission

  • H. Rauer
  • C. Catala
  • C. Aerts
  • T. Appourchaux
  • W. Benz
  • A. Brandeker
  • J. Christensen-Dalsgaard
  • M. Deleuil
  • L. Gizon
  • M.-J. Goupil
  • M. Güdel
  • E. Janot-Pacheco
  • M. Mas-Hesse
  • I. Pagano
  • G. Piotto
  • D. Pollacco
  • Ċ. Santos
  • A. Smith
  • J.-C. Suárez
  • R. Szabó
  • S. Udry
  • V. Adibekyan
  • Y. Alibert
  • J.-M. Almenara
  • P. Amaro-Seoane
  • M. Ammler-von Eiff
  • M. Asplund
  • E. Antonello
  • S. Barnes
  • F. Baudin
  • K. Belkacem
  • M. Bergemann
  • G. Bihain
  • A. C. Birch
  • X. Bonfils
  • I. Boisse
  • A. S. Bonomo
  • F. Borsa
  • I. M. Brandão
  • E. Brocato
  • S. Brun
  • M. Burleigh
  • R. Burston
  • J. Cabrera
  • S. Cassisi
  • W. Chaplin
  • S. Charpinet
  • C. Chiappini
  • R. P. Church
  • Sz. Csizmadia
  • M. Cunha
  • M. Damasso
  • M. B. Davies
  • H. J. Deeg
  • R. F. Díaz
  • S. Dreizler
  • C. Dreyer
  • P. Eggenberger
  • D. Ehrenreich
  • P. Eigmüller
  • A. Erikson
  • R. Farmer
  • S. Feltzing
  • F. de Oliveira Fialho
  • P. Figueira
  • T. Forveille
  • M. Fridlund
  • R. A. García
  • P. Giommi
  • G. Giuffrida
  • M. Godolt
  • J. Gomes da Silva
  • T. Granzer
  • J. L. Grenfell
  • A. Grotsch-Noels
  • E. Günther
  • C. A. Haswell
  • A. P. Hatzes
  • G. Hébrard
  • S. Hekker
  • R. Helled
  • K. Heng
  • J. M. Jenkins
  • A. Johansen
  • M. L. Khodachenko
  • K. G. Kislyakova
  • W. Kley
  • U. Kolb
  • N. Krivova
  • F. Kupka
  • H. Lammer
  • A. F. Lanza
  • Y. Lebreton
  • D. Magrin
  • P. Marcos-Arenal
  • P. M. Marrese
  • J. P. Marques
  • J. Martins
  • S. Mathis
  • S. Mathur
  • S. Messina
  • A. Miglio
  • J. Montalban
  • M. Montalto
  • M. J. P. F. G. Monteiro
  • H. Moradi
  • E. Moravveji
  • C. Mordasini
  • T. Morel
  • A. Mortier
  • V. Nascimbeni
  • R. P. Nelson
  • M. B. Nielsen
  • L. Noack
  • A. J. Norton
  • A. Ofir
  • M. Oshagh
  • R.-M. Ouazzani
  • P. Pápics
  • V. C. Parro
  • P. Petit
  • B. Plez
  • E. Poretti
  • A. Quirrenbach
  • R. Ragazzoni
  • G. Raimondo
  • M. Rainer
  • D. R. Reese
  • R. Redmer
  • S. Reffert
  • B. Rojas-Ayala
  • I. W. Roxburgh
  • S. Salmon
  • A. Santerne
  • J. Schneider
  • J. Schou
  • S. Schuh
  • H. Schunker
  • A. Silva-Valio
  • R. Silvotti
  • I. Skillen
  • I. Snellen
  • F. Sohl
  • S. G. Sousa
  • A. Sozzetti
  • D. Stello
  • K. G. Strassmeier
  • M. Švanda
  • Gy. M. Szabó
  • A. Tkachenko
  • D. Valencia
  • V. Van Grootel
  • S. D. Vauclair
  • P. Ventura
  • F. W. Wagner
  • N. A. Walton
  • J. Weingrill
  • S. C. Werner
  • P. J. Wheatley
  • K. Zwintz
Original Article

Abstract

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

Keywords

Exoplanets Asteroseismology Transit survey Stellar science Exoplanetary science 

Notes

Acknowledgments

The authors acknowledge many fruitful discussions with the ESA study team members, in particular the project scientist and the project manager (Ana Heras and Philippe Gondoin), as well as previous ESA members of the PLATO M1/M2 proposal (Osvaldo Piersanti, Anamarija Stankov). The M3 PLATO 2.0 Mission Consortium also thanks the consortium participants, in particular CNES, France, who prepared the M1/M2 PLATO proposal, which forms the basis on which PLATO 2.0’s application as M3 candidate is built on. We also thank Kayser Threde (in particular the study manager Richard Haarmann) for their inputs and fruitful cooperation in the M3 proposal preparation phase. We also thank the referees for their thorough revision and insightful comments, which have led to a significant improvement of this manuscript.

M. Ammler-von Eiff acknowledges support by DLR (Deutsches Zentrum für Luft- und Raumfahrt) under the project 50 OW 0204. M. Bergemann acknowledges the support by the European Research Council/European Community under the FP7 programme through ERC Grant number 320360. I. Boisse acknowledges the support from the Fundacao para a Ciencia e Tecnologia (Portugal) through the grant SFRH/BPD/87857/2012. For J. Christensen-Dalsgard, funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNRF106). The research is supported by the ASTERISK project (ASTERoseismic Investigations with SONG and Kepler) funded by the European Research Council (Grant agreement no.: 267864). L. Gizon acknowledges support from Deutsche Forschungsgemeinschaft SFB 963 “Astrophysical Flow Instabilities and Turbulence” (Project A18). M. Godolt and J.L. Grenfell have been partly supported by the Helmholtz Gemeinschaft (HGF) through the HGF research alliance “Planetary Evolution and Life”. S. Hekker acknowledges financial support from the Netherlands Organisation for Scientific Research (NOW) and the Stellar Ages project funded by the European Research Council (Grant agreement number 338251). K. G. Kislyakova, N. V. Erkaev, M. L. Khodachenko, H. Lammer, M. Güdel acknowledge support by the FWF NFN project S116 “Pathways to Habitability: From Disks to Active Stars, Planets and Life”, and subprojects, S116 604-N16 “Radiation & Wind Evolution from T Tauri Phase to ZAMS and Beyond”, S116 606-N16 “Magnetospheric Electrodynamics of Exoplanets”, S116607-N16 “Particle/Radiative Interactions with Upper Atmospheres of Planetary Bodies Under Extreme Stellar Conditions”. F. Kupka is grateful for support through FWF project P25229-N27. M. Mas-Hesse was supported by Spanish MINECO under grant AYA2012-39362-C02-01. L. Noack has been funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office through the Planet Topers alliance. D.R. Reese is supported through a postdoctoral fellowship from the “Subside fèdèral pour la recherche 2012”, University of Liège. I.W. Roxburgh gratefully acknowledges support from the Leverhulme Foundation under grant EM-2012-035/4. A. Santerne and N.C. Santos acknowledge the support by the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953. S. G. Sousa acknowledges the support by the European Research Council/European Community under the FP7 through Starting Grant agreement number 239953. Gy.M. Szabó acknowledges the Hungarian OTKA Grants K104607, the HUMAN MB08C 81013 grant, by the City of Szombathely under agreement No. S-11-1027 and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. R. Szabó was supported by the János Bolyai Research Scholarship, Hungarian OTKA grant K83790, KTIA URKUT_10-1-2011-0019 grant Lendület-2009 Young Researchers’ Program and the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreements no. 269194 (IRSES/ASK) and no. 312844 (SPACEINN).

References

  1. 1.
    Aerts, C., et al.: Science 300 (5627), 1926–1928 (2003)ADSGoogle Scholar
  2. 2.
    Aerts, C., et al.: Asteroseismology, Astronomy and Astrophysics Library. Springer Science + Business Media B.V (2010)Google Scholar
  3. 3.
    Agol, E.: ApJ 731, 31 (2011)ADSGoogle Scholar
  4. 4.
    Alibert, Y., et al.: A&A 417, 25 (2004)ADSGoogle Scholar
  5. 5.
    Alibert, Y., et al.: A&A 434, 343 (2005)ADSGoogle Scholar
  6. 6.
    Almenara, J.M., et al.: A&A 506, 337 (2009)ADSGoogle Scholar
  7. 7.
    Alonso, R., et al.: A&A 506, 353–358 (2009a)ADSGoogle Scholar
  8. 8.
    Alonso, R., et al.: A&A 501, L23–L26 (2009b)ADSGoogle Scholar
  9. 9.
    Ammons, S.M., et al.: ApJ 638, 1004–1017 (2006)ADSGoogle Scholar
  10. 10.
    Appourchaux, T., et al.: A&A 543, A54 (2012)ADSGoogle Scholar
  11. 11.
    Auvergne, M., et al.: A&A 506, 411 (2009)ADSGoogle Scholar
  12. 12.
    Baglin, A., et al.: In: 36th COSPAR Scientific Assembly, vol. 36, p. 3749 (2006)Google Scholar
  13. 13.
    Ballard, S., et al.: ApJ 743, 200 (2011)ADSGoogle Scholar
  14. 14.
    Ballot, J., et al.: A&A 423, 1051–1061 (2004)ADSGoogle Scholar
  15. 15.
    Ballot, J., et al.: A&A 530, A97 (2011)ADSGoogle Scholar
  16. 16.
    Barclay, T., et al.: Nature 494, 452–454 (2013)ADSGoogle Scholar
  17. 17.
    Barge, P., et al.: A&A 482, L17–L20 (2008)ADSGoogle Scholar
  18. 18.
    Barnes, J.W., Fortney, J.J.: ApJ 616, 1193 (2004)ADSGoogle Scholar
  19. 19.
    Barnes, S.A.: ApJ 669, 1167–1189 (2007)ADSGoogle Scholar
  20. 20.
    Barnes, J.W., et al.: ApJS 197, 10 (2011)ADSGoogle Scholar
  21. 21.
    Basu, R., et al.: ApJ 728 (id 157), 10 (2011)Google Scholar
  22. 22.
    Batalha, N.M., et al.: ApJL 713, L103 (2010)ADSGoogle Scholar
  23. 23.
    Batalha, N.M., et al.: ApJ 729, 27 (2011)ADSGoogle Scholar
  24. 24.
    Batalha, N.M., et al.: ApJS 204, 24 (2013)ADSGoogle Scholar
  25. 25.
    Batygin, K., et al.: ApJ 738, 1–11 (2011)ADSGoogle Scholar
  26. 26.
    Bean, J.L., et al.: Nature 468, 669–672 (2010)ADSGoogle Scholar
  27. 27.
    Beck, P.G., et al.: Science 332, 205 (2011)ADSGoogle Scholar
  28. 28.
    Beck, P.G., et al.: Nature 481, 55–57 (2012)ADSGoogle Scholar
  29. 29.
    Bedding, T.R., et al.: ApJ 713, L176–L181 (2010)ADSGoogle Scholar
  30. 30.
    Bedding, T.R., et al.: Nature 471, 608–611 (2011)ADSGoogle Scholar
  31. 31.
    Ben-Jaffel, L.: ApJ 671, L61–L64 (2007)ADSGoogle Scholar
  32. 32.
    Ben-Jaffel, L., Sona Hosseini, S.: ApJ 709, 1284 (2010)ADSGoogle Scholar
  33. 33.
    Benneke, B., Seager, S.: ApJ 753, 100 (2012)ADSGoogle Scholar
  34. 34.
    Bergemann, M., et al.: MNRAS 427, 27–49 (2012)ADSGoogle Scholar
  35. 35.
    Berta, Z.K., et al.: ApJ 747, 35 (2012)ADSGoogle Scholar
  36. 36.
    Bodenheimer, P., et al.: ApJ 592, 555–563 (2003)ADSGoogle Scholar
  37. 37.
    Boley, A.C., et al.: Icarus 207, 509–516 (2010)ADSGoogle Scholar
  38. 38.
    Bonfils, X., et al.: A&A 549, A109 (2013)ADSGoogle Scholar
  39. 39.
    Bonomo, A.S., Lanza, A.F.: A&A 547, A37 (2012)ADSGoogle Scholar
  40. 40.
    Borkovits, et al.: MNRAS 428, 1656 (2013)ADSGoogle Scholar
  41. 41.
    Borucki, W.J.: Icarus 58, 121B (1984)ADSGoogle Scholar
  42. 42.
    Borucki, W.J., et al.: Science 325, 709 (2009)ADSGoogle Scholar
  43. 43.
    Borucki, W.J., et al.: ApJ 745, 120 (2012)ADSGoogle Scholar
  44. 44.
    Borucki, W.J., et al.: Science 340, 587 (2013)ADSGoogle Scholar
  45. 45.
    Boss, A.P.: Science 276, 1836 (1997)ADSGoogle Scholar
  46. 46.
    Brassard, P., et al.: ApJ 563, 1013 (2001)ADSGoogle Scholar
  47. 47.
    Breger, M., et al.: MNRAS 414, 1721 (2011)ADSGoogle Scholar
  48. 48.
    Breger, M., et al.: ApJ 759 (id. 62), 10 (2012)Google Scholar
  49. 49.
    Briquet, M., et al.: A&A 527 (A112), 8 (2011)Google Scholar
  50. 50.
    Briquet, M., et al.: A&A 557 (L16), 4 (2013)Google Scholar
  51. 51.
    Broeg, C., et al.: EPJWC 47, 3005 (2013)Google Scholar
  52. 52.
    Brown, T.M., et al.: ApJ 427, 1013 (1994)ADSGoogle Scholar
  53. 53.
    Brown, T.M.: ApJ 593, L125 (2003)ADSGoogle Scholar
  54. 54.
    Budaj, J., et al.: A&A 557, A72 (2013)ADSGoogle Scholar
  55. 55.
    Burke, C.J., et al.: ApJS 210, 19 (2014)ADSGoogle Scholar
  56. 56.
    Cabrera, J., et al.: A&A 522 (A110), 10 (2010)Google Scholar
  57. 57.
    Cabrera, J.: EAS Publ. Ser. 42, 109 (2010)Google Scholar
  58. 58.
    Cabrera, J., et al.: ApJ 781, 18 (2014)ADSGoogle Scholar
  59. 59.
    Catanzarite, J., Shao, M.: ApJ 738, 10 (2011)Google Scholar
  60. 60.
    Carter, J.A., et al.: Science 337, 556 (2012)ADSGoogle Scholar
  61. 61.
    Casertano, S., et al.: A&A 482, 699 (2008)ADSGoogle Scholar
  62. 62.
    Casewell, S.L., et al.: ApJ 759, L34 (2012)ADSGoogle Scholar
  63. 63.
    Cassan, A., et al.: Nature 481, 167–169 (2012)ADSGoogle Scholar
  64. 64.
    Catala, C.: ExA 23, 329–356 (2009)ADSGoogle Scholar
  65. 65.
    Catala, C., Appourchaux, T.: JPhCS 271a2084C (2011)Google Scholar
  66. 66.
    Ceillier, T., et al.: A&A 555, A54 (2013)ADSGoogle Scholar
  67. 67.
    Chambers, J.E., Cassen, P.: M&PS 37, 1523 (2002)ADSGoogle Scholar
  68. 68.
    Chaplin, W.J., et al.: ApJL 732, L5 (2011)ADSGoogle Scholar
  69. 69.
    Chaplin, W.J., et al.: ApJ 766, 101 (2013)ADSGoogle Scholar
  70. 70.
    Charbonneau, D., et al.: Protostars and Planets V 701 (2007)Google Scholar
  71. 71.
    Charbonneau, D., et al.: Nature 462 (7275), 891 (2009)ADSGoogle Scholar
  72. 72.
    Charpinet, S., et al.: Nature 461, 501 (2009)ADSGoogle Scholar
  73. 73.
    Charpinet, S., et al.: A&A 516, 6 (2010)ADSGoogle Scholar
  74. 74.
    Charpinet, S., et al.: Nature 480, 496 (2011)ADSGoogle Scholar
  75. 75.
    Chiappini, C., et al.: A&A 449, L27—L30 (2006)ADSGoogle Scholar
  76. 76.
    Chiosi, C.: IAUS 239, 235 (2007)ADSGoogle Scholar
  77. 77.
    Christensen-Dalsgaard, J.: IAUS, 123. In: Christensen-Dalsgaard, J., Frandsen, S. (eds.) p. 3 (1988)Google Scholar
  78. 78.
    Collier-Cameron, A., et al. MNRAS 380, 1230 (2007)ADSGoogle Scholar
  79. 79.
    Contadakis, M.E., et al.: In: Contadakis, M.E., et al. (ed.) The Apple of Knowledge, pp. 459–474 (2010)Google Scholar
  80. 80.
    Contadakis, M.E., et al.: AN 333, 583 (2012)ADSGoogle Scholar
  81. 81.
    Cooper, C.S., Showman, A.P.: ApJL 629, L45 (2005)ADSGoogle Scholar
  82. 82.
    Corsaro, E., et al.: ApJ 757 (id. 190), 13 (2012)Google Scholar
  83. 83.
    Cowan, N.B., Agol, E.: ApJL 678, L129 (2008)ADSGoogle Scholar
  84. 84.
    Cowan, N.B., Agol, E.: ApJ 726, 82 (2011)ADSGoogle Scholar
  85. 85.
    Crossfield, I.J.M.: A&A 545, A97 (2012)ADSGoogle Scholar
  86. 86.
    Csizmadia, Sz., et al.: A&A 417, 745–750 (2004)ADSGoogle Scholar
  87. 87.
    Cunha, M.S., Metcalfe, T.S.: ApJ 666, 413 (2007)ADSGoogle Scholar
  88. 88.
    Czesla, S., et al.: A&A 505, 1277–1282 (2009)ADSGoogle Scholar
  89. 89.
    de Mooij, E. J. W., et al.: ApJ 771, 109 (2013)ADSGoogle Scholar
  90. 90.
    Deeg, H.J., et al.: A&A 338, 479 (1998)ADSGoogle Scholar
  91. 91.
    Deeg, H.J., Doyle, L.R.: EPJWC 11, id.05005 (2011)Google Scholar
  92. 92.
    Degroote, P., et al.: Nature 464, 259–261 (2010)ADSGoogle Scholar
  93. 93.
    Degroote, P., et al.: A&A 536 (id.A82), 15 (2011)Google Scholar
  94. 94.
    Degroote, P., et al.: A&A 542 (id.A88), 25 (2012)Google Scholar
  95. 95.
    Deheuvels, S., Michel, E.: A&A 535, A91 (2011)ADSGoogle Scholar
  96. 96.
    Deheuvels, S., et al.: ApJ 756, 19 (2012)ADSGoogle Scholar
  97. 97.
    De Mooij, E.J.W., et al.: A&A 538, A46 (2012)ADSGoogle Scholar
  98. 98.
    Derekas, A., et al.: MNRAS 425, 1312–1319 (2012)ADSGoogle Scholar
  99. 99.
    Demory, B.-O., et al.: ApJL 735, L12 (2011a)ADSGoogle Scholar
  100. 100.
    Demory, B.-O., et al.: ApJS 197, 12 (2011b)ADSGoogle Scholar
  101. 101.
    Demory, B.-O., et al.: ApJL 751, L28 (2012)ADSGoogle Scholar
  102. 102.
    De Ridder, J., et al.: Nature 459, 398 (2009)ADSGoogle Scholar
  103. 103.
    Diaz, R.F., et al.: MNRAC 441, 983 (2014)ADSGoogle Scholar
  104. 104.
    Dodson-Robinson, S.E., Bodenheimer, P.: Icarus 207, 491–498 (2010)ADSGoogle Scholar
  105. 105.
    Dong, S., Zhu, Z.: ApJ 778, 53 (2013)ADSGoogle Scholar
  106. 106.
    Doyle, L.R., et al.: Science 333, 1602 (2011)ADSMathSciNetGoogle Scholar
  107. 107.
    Dvorak, R., et al.: A&A 226, 335 (1989)ADSGoogle Scholar
  108. 108.
    Dziembowski, W.A., Pamyatnykh, A.A.: MRNAS 385, 2061–2068 (2008)Google Scholar
  109. 109.
    Dzigan, Y., Zucker, S.: ApJL 753, L1 (2012)ADSGoogle Scholar
  110. 110.
    Eggenberger, P., et al.: A&A 519, A116 (2010)ADSGoogle Scholar
  111. 111.
    Eggenberger, P., et al.: A&A 544, L4 (2012)ADSGoogle Scholar
  112. 112.
    Eggleton, P.P.: JASS 29, 145–149 (2012)ADSGoogle Scholar
  113. 113.
    Ehrenreich, D., et al.: A&A 547, A18 (2012)ADSGoogle Scholar
  114. 114.
    Ekenbäck, A., et al.: ApJ 709, 670–67 (2010)ADSGoogle Scholar
  115. 115.
    Elkins-Tanton, L., Seager, S.: ApJ 685, 1237 (2008)ADSGoogle Scholar
  116. 116.
    Erkaev, N.V., et al.: Astrobiology 13 (11), 1011–1029 (2013)ADSGoogle Scholar
  117. 117.
    ESA/SRE(2011)13: PLATO Definition Study Report during M1/M2 candidate application (2011)Google Scholar
  118. 118.
    ESA/SRE(2009)4: PLATO Assessment Study Report (Yellow Book) (2009)Google Scholar
  119. 119.
    Escobar, et al.: A&A 543, A96 (2012)ADSGoogle Scholar
  120. 120.
    Fabrycky, D.C., et al.: ApJ 750, A114 (2012)ADSGoogle Scholar
  121. 121.
    Faedi, F., et al.: MNRAS 410, 899 (2011)ADSGoogle Scholar
  122. 122.
    Faigler, S., et al.: ApJ 746, 185 (2012)ADSGoogle Scholar
  123. 123.
    Faigler, S., et al.: ApJ 771, 26 (2013)ADSGoogle Scholar
  124. 124.
    Figueira, P., et al.: A&A 493, 671 (2009)ADSGoogle Scholar
  125. 125.
    Fontaine, G., et al.: PASP 113, 409 (2001)ADSGoogle Scholar
  126. 126.
    Fontaine, G., Brassard, P.: PASP 120, 1043 (2008)ADSGoogle Scholar
  127. 127.
    Fontaine, G., et al.: A&A 539, 12 (2012)ADSGoogle Scholar
  128. 128.
    Ford, E.B., et al.: ApJ 750, 113–131 (2012)ADSGoogle Scholar
  129. 129.
    Ford, E.B., Holman, M.J.: ApJL 664, 51 (2007)ADSGoogle Scholar
  130. 130.
    Fortier, A., et al.: A&A 473, 311–322 (2007)ADSGoogle Scholar
  131. 131.
    Fortier, A., et al.: A&A 549, 44 (2013)ADSGoogle Scholar
  132. 132.
    Fortney, J.J., et al.: ApJ 659, 1661–1672 (2007)ADSGoogle Scholar
  133. 133.
    Fortney, J.J., Nettelmann, N.: SSRv 152, 423 (2010)ADSGoogle Scholar
  134. 134.
    Fossati, L., et al.: ApJ 714, L222–L227 (2010)ADSGoogle Scholar
  135. 135.
    Fressin, F., et al.: ApJ 745, 81 (2012a)ADSGoogle Scholar
  136. 136.
    Fressin, F., et al.: Nature 482, 195–198 (2012b)ADSGoogle Scholar
  137. 137.
    Fressin, F., et al.: ApJ 766, 81 (2013)ADSGoogle Scholar
  138. 138.
    Gaidos, E.: 770, 12 (2013)Google Scholar
  139. 139.
    García Hernández, A., et al.: A&A 506, 79–83 (2009)ADSGoogle Scholar
  140. 140.
    Garcia Hernández, A., et al.: Science 329, 1032 (2010)ADSGoogle Scholar
  141. 141.
    García Hernández, A., et al.: A&A 559, A63 (2013)ADSGoogle Scholar
  142. 142.
    Giammichele, N., et al.: ASPC 469, 49 (2013)ADSGoogle Scholar
  143. 143.
    Gillet, D.: A&A 544, A46 (2013)ADSGoogle Scholar
  144. 144.
    Gilliland, R.L., et al.: ApJ 766, 40 (2013)ADSGoogle Scholar
  145. 145.
    Gillon, M., et al.: A&A 506, 359–367 (2009)ADSGoogle Scholar
  146. 146.
    Gillon, M., et al.: A&A 520, A97–A105 (2010)ADSGoogle Scholar
  147. 147.
    Girardi, L., et al.: A&A 436, 895–915 (2005)ADSGoogle Scholar
  148. 148.
    Gizon, L., Solanki, S.: ApJ 589, 1009–1019 (2003)ADSGoogle Scholar
  149. 149.
    Gizon, L., et al.: PNAS 213 (110), 13267 (2013)ADSGoogle Scholar
  150. 150.
    Goldreich, P., Soter, S.: Icarus 5, 375 (1966)ADSGoogle Scholar
  151. 151.
    Gómez de Castro, A.I., et al.: Ap&SS 335, 283 (2011)ADSGoogle Scholar
  152. 152.
    Goossens, M., et al.: ApJ 760, 98 (2012)ADSGoogle Scholar
  153. 153.
    Grasset, O., et al.: ApJ 693, 722–733 (2009)ADSGoogle Scholar
  154. 154.
    Griest, K., et al.: ApJ 786, 158 (2014)ADSGoogle Scholar
  155. 155.
    Guilera, O.M., et al.: A&A 532, 142 (2011)ADSGoogle Scholar
  156. 156.
    Guillot, T., et al.: ApJL 459, L35–L38 (1996)ADSGoogle Scholar
  157. 157.
    Guillot, T., et al.: A&A 453, L21–L24 (2006)ADSGoogle Scholar
  158. 158.
    Guillot, T., Havel, M.: A&A 527, A20–A35 (2011)ADSGoogle Scholar
  159. 159.
    Hadden, S., Lithwick, Y.: ApJ 787, 80 (2014)ADSGoogle Scholar
  160. 160.
    Haswell, C., et al.: ApJ 760, 79 (2012)ADSGoogle Scholar
  161. 161.
    Hatzes, A., et al.: ApJ 743, 75 (2011)ADSGoogle Scholar
  162. 162.
    Heber, U.: ARA&A 47, 211 (2009)ADSGoogle Scholar
  163. 163.
    Hekker, S., et al.: MNRAS 414, 2594–2601 (2011)ADSGoogle Scholar
  164. 164.
    Hekker, S., et al.: Astron. Nachr. 333, 1022 (2012)ADSGoogle Scholar
  165. 165.
    Helled, R., Schubert, G.: Icarus 198, 156–162 (2008)ADSGoogle Scholar
  166. 166.
    Helled, R., et al.: ApJ 726, 15–22 (2011)ADSGoogle Scholar
  167. 167.
    Helled, R., Bodenheimer, P.: Icarus 211, 939 (2011)ADSGoogle Scholar
  168. 168.
    Helled, R., Guillot, T.: ApJ 767, 113 (2013)ADSGoogle Scholar
  169. 169.
    Heller, R., Barnes, R: IAU Symposium 293, 159 (2014)Google Scholar
  170. 170.
    Heng, K., et al.: MNRAS 413, 2380–2402 (2011)ADSGoogle Scholar
  171. 171.
    Hogan, E., et al.: MNRAS 396, 2074 (2009)ADSGoogle Scholar
  172. 172.
    Holmström, M., et al.: Nature 451, 970–972 (2008)ADSGoogle Scholar
  173. 173.
    Hori, Y., Ikoma, M.: MNRAS 416, 1419–1429 (2011)ADSGoogle Scholar
  174. 174.
    Houdek, G., Gough, D.O.: MNRS 375, 861–880 (2007)ADSGoogle Scholar
  175. 175.
    Howard, A.W., et al.: ApJS 201, 15 (2012)ADSGoogle Scholar
  176. 176.
    Huber, D., et al.: ApJ 760, 32 (2012)ADSGoogle Scholar
  177. 177.
    Huber, D., et al.: ApJ 767, 127 (2013a)ADSGoogle Scholar
  178. 178.
    Huber, D., et al.: Science 342, 331–334 (2013b)ADSGoogle Scholar
  179. 179.
    Hubickyj, O., et al.: Icarus 179, 415–431 (2005)ADSGoogle Scholar
  180. 180.
    Ida, S., Lin, D.N.C.: ApJ 604, 388–413 (2004)ADSGoogle Scholar
  181. 181.
    Ikoma, M., et al.: ApJ 537, 1013–1025 (2000)ADSGoogle Scholar
  182. 182.
    Johnson, J.A., et al.: PASP 122, 701 (2010a)ADSGoogle Scholar
  183. 183.
    Johnson, J.A., et al.: ApJl 721, L153 (2010b)ADSGoogle Scholar
  184. 184.
    Jura, M.: AJ 130, 1261 (2005)ADSGoogle Scholar
  185. 185.
    Kasting, J.F., et al.: Icarus 101, 108–128 (1993)ADSGoogle Scholar
  186. 186.
    Kennedy, G.M., Kenyon, S.J.: ApJ 673, 502 (2008)ADSGoogle Scholar
  187. 187.
    Kipping, D.M.: MNRAS 392, 181–189 (2009a)ADSGoogle Scholar
  188. 188.
    Kipping, D.M.: MNRAS 396, 1797–1804 (2009b)ADSGoogle Scholar
  189. 189.
    Kipping, D.M., et al.: MNRAS 400, 398–405 (2009c)ADSGoogle Scholar
  190. 190.
    Kipping, D.M., et al.: ApJ 750, 115 (2012)ADSGoogle Scholar
  191. 191.
    Kipping, D.M., et al.: MNRAS 434, 1883 (2013)ADSGoogle Scholar
  192. 192.
    Kislyakova, K.G., et al.: Astrobiology 13 (11), 1030–1048 (2013)ADSGoogle Scholar
  193. 193.
    Kjeldsen, H., Bedding, T.R.: A&A 293, 87 (1995)ADSGoogle Scholar
  194. 194.
    Kjeldsen, H., et al.: ApJ 683, L175–L178 (2008)ADSGoogle Scholar
  195. 195.
    Knutson, H.A., et al.: Nature 447, 183–186 (2007)ADSGoogle Scholar
  196. 196.
    Knutson, H.A., et al.: ApJ 690, 822–836 (2009)ADSGoogle Scholar
  197. 197.
    Knutson, H.A., et al.: ApJ 735, 27 (2011)ADSGoogle Scholar
  198. 198.
    Kreidberg, L., et al.: Nature 505, 69 (2014)ADSGoogle Scholar
  199. 199.
    Koch, D.G., et al.: ApJL 713, L79–L86 (2010)ADSGoogle Scholar
  200. 200.
    Kolenberg, K., et al.: MNRAS 411, 878–890 (2011)ADSGoogle Scholar
  201. 201.
    Kollath, Z., et al.: MNRAS 414, 1111–1118 (2011)ADSGoogle Scholar
  202. 202.
    Koskinen, T.T., et al.: Nature 450, 845 (2007)ADSGoogle Scholar
  203. 203.
    Koskinen, T.T., et al.: Icarus 226, 1678 (2013)ADSGoogle Scholar
  204. 204.
    Kosovichev, A.G.: AN 323, 186–191 (2002)ADSGoogle Scholar
  205. 205.
    Kovacs, G., et al.: ApJ 724, 866–877 (2010)ADSGoogle Scholar
  206. 206.
    Kunder, A., et al.: AJ 141, 15 (2011)ADSGoogle Scholar
  207. 207.
    Lammer, H., et al.: Ap&SS 335, 9–23 (2011a)ADSGoogle Scholar
  208. 208.
    Lammer, H., et al.: Ap&SS 335, 39–50 (2011b)ADSGoogle Scholar
  209. 209.
    Lammer, H., et al.: EP&S 64, 179–199 (2012)ADSGoogle Scholar
  210. 210.
    Laughlin, G., et al.: ApJ 729, 7 (2011)ADSGoogle Scholar
  211. 211.
    Le Borgne, J.F., et al.: AJ 144, 39–53 (2012)ADSGoogle Scholar
  212. 212.
    Lebreton, Y., Goupil, M.: A&A 544, 13 (2012)ADSGoogle Scholar
  213. 213.
    Lecavelier des Etangs, A., et al.: A&ASS 140, 15 (1999)ADSGoogle Scholar
  214. 214.
    Lecavelier des Etangs, A., et al.: A&A 543, 4 (2012)ADSGoogle Scholar
  215. 215.
    Leconte, J., Charbier, T.: A&A 540, A20 (2012)ADSGoogle Scholar
  216. 216.
    Leconte, J., Charbier, T.: Nat. Geosci. 6, 347 (2013)ADSGoogle Scholar
  217. 217.
    Lefever, K., et al.: A&A 463, 1093–1109 (2007)ADSGoogle Scholar
  218. 218.
    Leger, A., et al.: A&A 506, 287–302 (2009)ADSGoogle Scholar
  219. 219.
    Liebert, J., et al.: ApJ 769, 7 (2013)ADSGoogle Scholar
  220. 220.
    Linsky, J.L., et al.: ApJ 717, 1291–1299 (2010)ADSGoogle Scholar
  221. 221.
    Lissauer, J.J., et al.: Nature 470, 53–58 (2011)ADSGoogle Scholar
  222. 222.
    Llama, J., et al.: MNRAS 416, L41–L44 (2011)ADSGoogle Scholar
  223. 223.
    Loeb, A., Maoz, D.: MNRAS 432, 11 (2013)ADSGoogle Scholar
  224. 224.
    Lopez, E.D., et al.: ApJ 761, 59 (2012)ADSGoogle Scholar
  225. 225.
    Madhusudhan, N., Seager, S.: ApJ 707, 24–39 (2009)ADSGoogle Scholar
  226. 226.
    Mazumdar, A., et al.: ApJ 782, 17 (2014)ADSGoogle Scholar
  227. 227.
    Maeder, A.: Physics, Formation and Evolution of Rotating Stars. Springer Eds (2009)Google Scholar
  228. 228.
    Maeder, A: A&A 26, 215 (1973)ADSGoogle Scholar
  229. 229.
    Magic, Z., et al.: A&A 557, A26 (2013)ADSGoogle Scholar
  230. 230.
    Mamajek, E.E., Hillenbrand, L.A.: ApJ 687, 1264 (2008)ADSGoogle Scholar
  231. 231.
    Mantegazza, L., et al.: A&A 542 (id.A24), 13 (2012)Google Scholar
  232. 232.
    Marcos-Arenal, P. , et al.: arXiv: http://arxiv.org/abs/1004.0738 (2014)
  233. 233.
    Mardling, R.A.: MNRAS 407, 1048–1069 (2010)ADSGoogle Scholar
  234. 234.
    Marley, M.S., et al.: JGR 100, 23349–23354 (1995)ADSGoogle Scholar
  235. 235.
    Marques, J.P., et al.: A&A 549, A74 (2013)ADSGoogle Scholar
  236. 236.
    Mathur, S., et al.: ApJ 749, 152 (2012)ADSGoogle Scholar
  237. 237.
    Mathur, S., et al.: A&A 550 (id.A32), 7 (2013)Google Scholar
  238. 238.
    Matijevič, G., et al.: AJ 143, 123 (2012)ADSGoogle Scholar
  239. 239.
    Mayer, L., et al.: MNRAS 363, 641–648 (2005)ADSGoogle Scholar
  240. 240.
    Mayor, M., et al.: arXiv: http://arxiv.org/abs/1109.2497M (2011)
  241. 241.
    Mazeh, T., Faigler, S.: A&A 521, L59 (2010)ADSGoogle Scholar
  242. 242.
    Mazeh, T., et al.: A&A 541, A56 (2012)ADSGoogle Scholar
  243. 243.
    Mazeh, T., et al.: ApJS 208, 16 (2013)ADSGoogle Scholar
  244. 244.
    McLaughlin, D.B.: ApJ 60, 22–31 (1924)ADSGoogle Scholar
  245. 245.
    Metcalfe, T.S., et al.: ApJ 699, 373–382 (2009)ADSGoogle Scholar
  246. 246.
    Metcalfe, T.S., et al.: ApJ 723, 1583–1598 (2010)ADSGoogle Scholar
  247. 247.
    Metcalfe, T.S., et al.: ApJ 748, 10 (2012)ADSGoogle Scholar
  248. 248.
    Miglio, A., Montalbán, J.: A&A 441, 615–629 (2005)ADSGoogle Scholar
  249. 249.
    Miglio, A., et al.: A&A 520, L6 (2010)ADSGoogle Scholar
  250. 250.
    Miglio, A.: In: Miglio, A., Montalban, J., Noels, A. (eds.) Red Giants as Probes of the Structure and Evolution of the Milky Way. Springer, Berlin (2012)Google Scholar
  251. 251.
    Miglio, A., et al.: EPJWC 19, 5012 (2012)Google Scholar
  252. 252.
    Miglio, A., et al.: MNRAS 429, 423–428 (2013)ADSGoogle Scholar
  253. 253.
    Militzer, B., et al.: ApJL 688, L45–L48 (2008)ADSGoogle Scholar
  254. 254.
    Miller, N., Fortney, J.J.: ApJL 736, L29–L34 (2011)ADSGoogle Scholar
  255. 255.
    Molnár, L., et al.: ApJ 757, 13 (2012)ADSGoogle Scholar
  256. 256.
    Moravveji, E., et al.: ApJ 749, 74 (2012a)ADSGoogle Scholar
  257. 257.
    Moravveji, E., et al.: ApJ 747 (108), 7 (2012b)Google Scholar
  258. 258.
    Mortier, A. , et al. : A&A 551, 5 (2013)Google Scholar
  259. 259.
    Montalban, J., et al.: ApJ 766, 118 (2013)ADSGoogle Scholar
  260. 260.
    Mordasini, C., et al.: A&A 501, 1161–184 (2009)ADSGoogle Scholar
  261. 261.
    Mordasini, C., et al.: A&A 541, A97 (2012a)ADSGoogle Scholar
  262. 262.
    Mordasini, C., et al.: A&A 547 (id.A111), 23 (2012b)Google Scholar
  263. 263.
    Mosser, B., Appourchaux, T.: A&A 532, A86 (2010)Google Scholar
  264. 264.
    Mosser, B., et al.: A&A 532, A86 (2011)ADSGoogle Scholar
  265. 265.
    Mosser, B., et al.: A&A 540, A143 (2012)ADSGoogle Scholar
  266. 266.
    Moutou, C., et al.: Icarus 226, 1625 (2013)ADSGoogle Scholar
  267. 267.
    Muirhead, P.S., et al.: ApJ 747, 144 (2012)ADSGoogle Scholar
  268. 268.
    Muirhead, P.S., et al.: ApJ 767, 111 (2013)ADSGoogle Scholar
  269. 269.
    Namouni, F.: ApJL 719, 145 (2010)ADSGoogle Scholar
  270. 270.
    Narita, N., et al. : PASJ 65, 27 (2013)ADSGoogle Scholar
  271. 271.
    Nettelmann, N., et al.: ApJ 683, 1217–1228 (2008)ADSGoogle Scholar
  272. 272.
    Nesvorný, D., et al.: ApJ 777, 3 (2013)ADSGoogle Scholar
  273. 273.
    Nielsen, M.B., et al.: A&A 557, L10 (2013)ADSGoogle Scholar
  274. 274.
    Noack, L., et al.: P&SS, in press (2014)Google Scholar
  275. 275.
    Nordhaus, J., Spiegel, D.S.: MNRAS 432, 500 (2013)ADSGoogle Scholar
  276. 276.
    Ofir, A., Dreizler, S.: A&A 555, A58 (2013)ADSGoogle Scholar
  277. 277.
    Ogilvie, G.I.: MNRAS 429, 613 (2013)ADSGoogle Scholar
  278. 278.
    Ohta, Y., et al.: ApJ 690, 1–12 (2009)ADSGoogle Scholar
  279. 279.
    Oshagh, M., et al.: A&A 556, A19 (2013)ADSGoogle Scholar
  280. 280.
    Østensen, R.H., et al.: MNRAS 409, 1470 (2010)ADSGoogle Scholar
  281. 281.
    Pápics, P.I., et al.: A&A 528 (id.A123), 11 (2011)Google Scholar
  282. 282.
    Pápics, P.I., et al.: A&A 542 (id.A55), 13 (2012)Google Scholar
  283. 283.
    Pápics, P.I., et al. : A&A 553, A127 (2013)ADSGoogle Scholar
  284. 284.
    Parker, E.N.: Solar Phys. 176, 219 (1979)ADSGoogle Scholar
  285. 285.
    Pasquini, L., et al. A&A 473, 979 (2007)ADSGoogle Scholar
  286. 286.
    Perryman, M., et al.: A&A 369, 339 (2001)ADSGoogle Scholar
  287. 287.
    Petigura, E., et al.: PNAS 110, 19273 (2013)ADSGoogle Scholar
  288. 288.
    Pierens, A., Nelson, R.P.: A&A 472, 993 (2007)ADSMATHGoogle Scholar
  289. 289.
    Podolak, M., et al.: P&SS 43, 1517–1522 (1995)ADSGoogle Scholar
  290. 290.
    Pont, F., et al.: MNRAS 432, 2917–2944 (2013)ADSGoogle Scholar
  291. 291.
    Poretti, E., et al.: A&A 506, 85–93 (2009)ADSGoogle Scholar
  292. 292.
    Poretti, E., et al.: A&A 520, A108 (2010)ADSGoogle Scholar
  293. 293.
    Poretti, E., et al.: A&A 528, A147 (2011)ADSGoogle Scholar
  294. 294.
    Prša, A., et al.: AJ 141, 83 (2011)ADSGoogle Scholar
  295. 295.
    Quirion, P.-O., et al.: ApJ 725, 2176–2189 (2010)ADSGoogle Scholar
  296. 296.
    Rafert, J.B., Twigg, L.W.: MNRAS 193, 7 (1980)Google Scholar
  297. 297.
    Rappaport, S., et al.:. ApJ 752, 1 (2012)ADSGoogle Scholar
  298. 298.
    Rauer, H., Catala, C.: IAUS 276, 354–358 (2011)ADSGoogle Scholar
  299. 299.
    Rauer, H., et al.: In: deVera (ed) Habitability of Other Planets and Satellites (2013)Google Scholar
  300. 300.
    Reese, D.R., et al.: A&A 539, A63 (2012)ADSGoogle Scholar
  301. 301.
    Rempel, M., et al.: Science 325, 171 (2009)ADSGoogle Scholar
  302. 302.
    Remus, M., et al.: A&A 541, id.A165 (2012)Google Scholar
  303. 303.
    Ricker, G., et al.: JAVSO 42, 234 (2014)ADSGoogle Scholar
  304. 304.
    Robin, A.C., et al.: A&A 409, 523–540 (2003)ADSGoogle Scholar
  305. 305.
    Rogers, T.M., et al.: ApJ 772, 21 (2013)ADSGoogle Scholar
  306. 306.
    Rossiter, R.A.: ApJ 60, 15–21 (1924)ADSGoogle Scholar
  307. 307.
    Rowe, J.F., et al. ApJ 784, 45 (2014)ADSGoogle Scholar
  308. 308.
    Roxburgh, I.W., Vorontsov, S.V.: A&A 411, 215 (2003a)ADSGoogle Scholar
  309. 309.
    Roxburgh, I.W., Vorontsov, S.V.: Ap&SS 284, 187 (2003b)ADSGoogle Scholar
  310. 310.
    Roxburgh, I.W., Vorontsov, S.V.: MNRAS 369, 1491 (2006)ADSGoogle Scholar
  311. 311.
    Roxburgh, I.W.: A&A 493, 185–191 (2009a)ADSGoogle Scholar
  312. 312.
    Roxburgh, I.W.: A&A 506, 435–444 (2009b)ADSGoogle Scholar
  313. 313.
    Saio, H., et al.: ApJ 650, 1111–1118 (2006)ADSGoogle Scholar
  314. 314.
    Samus, N.N., et al.: Fifty years of Cosmic Era: real and virtual studies of the sky. In: Mickaelian, A.M., et al. (eds.) Conference of Young Scientists of CIS Countries, pp. 39–47 (2012)Google Scholar
  315. 315.
    Sanchís-Ojeda, R., et al.: Nature 487, 449–453 (2012)ADSGoogle Scholar
  316. 316.
    Sanchís-Ojeda, R., et al.: AN 334, 180 (2013a)ADSGoogle Scholar
  317. 317.
    Sanchís-Ojeda, R., et al.: ApJ 774, 54 (2013b)ADSGoogle Scholar
  318. 318.
    Santerne, A., et al.: A&A 545, A76 (2012)ADSGoogle Scholar
  319. 319.
    Santerne, A., et al.: A&A 557, 139 (2013)ADSGoogle Scholar
  320. 320.
    Sartoretti, P., Schneider, J.: A&AS 134, 553–560 (1999)ADSGoogle Scholar
  321. 321.
    Saumon, D., Guillot, T.: ApJ 609, 1170–1180 (2004)ADSGoogle Scholar
  322. 322.
    Scaringi, S., et al.: MNRAS 431, 2535–2541 (2013)ADSGoogle Scholar
  323. 323.
    Schneider, J., et al.: In: Rebolo, R., Martin, E.L., Zapatero Osorio, M.R. (eds.) Conf. Ser. 134, p. 241 (1998)Google Scholar
  324. 324.
    Schneider, J., et al.: A&A 532, 79 (2011)ADSGoogle Scholar
  325. 325.
    Schneider, J., et al.: IJA. submitted (2014)Google Scholar
  326. 326.
    Seager, S., et al.: ApJ 669, 1279–1297 (2007)ADSGoogle Scholar
  327. 327.
    Shiode, J.H., et al.: MNRAS 430, 1736–1745 (2013)Google Scholar
  328. 328.
    Showman, A.P., Guillot, T.: A&A 385, 166–180 (2002)ADSGoogle Scholar
  329. 329.
    Showman, A.P., et al.: ApJ 699, 564 (2009)ADSGoogle Scholar
  330. 330.
    Shporer, A., et al.: NewA 17, 309–315 (2012)ADSGoogle Scholar
  331. 331.
    Shporer, A., et al.: AJ 142, 195 (2011)ADSGoogle Scholar
  332. 332.
    Shustov, B., et al.: Ap&SS 320, 187–190 (2009)ADSGoogle Scholar
  333. 333.
    Shustov, B., et al.: Ap&SS 335, 273–282 (2011)ADSGoogle Scholar
  334. 334.
    Simon, A.E., et al.: MNRAS 419, 164–171 (2012)ADSGoogle Scholar
  335. 335.
    Silva, A.V.R.: ApJL 585, 147 (2003)ADSGoogle Scholar
  336. 336.
    Silva Aguirre, V., et al.: ApJ 757, 99 (2012)ADSGoogle Scholar
  337. 337.
    Silva-Valio, A.: ApJ 683, 179–182 (2008)ADSGoogle Scholar
  338. 338.
    Silva-Valio, A., Lanza, A.F.: A&A 529, A36 (2011)ADSGoogle Scholar
  339. 339.
    Silvotti, R., et al.: Nature 449, 189 (2007)ADSGoogle Scholar
  340. 340.
    Silvotti, R., et al.: AIP Conf. Proc. 1331, 336 (2011)ADSGoogle Scholar
  341. 341.
    Silvotti, R., et al.: A&A, submitted (2014)Google Scholar
  342. 342.
    Slawson, R.W., et al.: AJ 142, 160 (2011)ADSGoogle Scholar
  343. 343.
    Sliski, D.H., Kipping, D.M.: arXiv: http://arxiv.org/abs/1401.1207 (2014)
  344. 344.
    Snellen, I.A.G., et al.: Nature 459, 543–545 (2009)ADSGoogle Scholar
  345. 345.
    Snellen, I.A.G., et al.: A&A 513, A76 (2010)ADSGoogle Scholar
  346. 346.
    Sohl, F., Schubert, G.: In: Spohn, T. (ed.) Treatise on Geophysics (Editor-in-Chief G. Schubert), vol. 10, Planets and Moons, pp. 27–68. Elsevier (2007)Google Scholar
  347. 347.
    Solanki, S.K., et al.: ARA&A 51, 311–351 (2013)ADSGoogle Scholar
  348. 348.
    Sotin, C., et al.: Icarus 191, 337–351 (2007)ADSGoogle Scholar
  349. 349.
    Steffen, J.H., et al.: MNRAS 428, 1077 (2012)ADSGoogle Scholar
  350. 350.
    Stello, D., et al.: ApJ 700, 1589–1602 (2009)ADSGoogle Scholar
  351. 351.
    Stello, D., et al.: ApJ 13 (id. 13) (2011)Google Scholar
  352. 352.
    Straniero, O., et al.: ApJ 583, 878 (2003)ADSGoogle Scholar
  353. 353.
    Strassmeier, K.G.: A&ARv 17, 251–308 (2009)ADSGoogle Scholar
  354. 354.
    Suárez, J.C., et al.: A&A 449, 673–685 (2006)ADSGoogle Scholar
  355. 355.
    Suárez, J.C., et al.: ApJ 690, 1401 (2009)ADSGoogle Scholar
  356. 356.
    Suárez, J.C., et al.: A&A 563, A7 (2014)ADSGoogle Scholar
  357. 357.
    Swift, D.C., et al.: ApJ 744, 595 (2012)Google Scholar
  358. 358.
    Szabó, R., et al.: MNRAS 409, 1244 (2010)ADSGoogle Scholar
  359. 359.
    Szabo, R., et al.: MNRAS 413, 2709 (2011)ADSGoogle Scholar
  360. 360.
    Szabo, R., et al.: A&A 553, 17 (2013)ADSGoogle Scholar
  361. 361.
    Thoul, A., et al.: A&A 551 (id.A12), 6 (2013)Google Scholar
  362. 362.
    Tingley, B., et al.: ApJ 726, 112 (2011)ADSGoogle Scholar
  363. 363.
    Tkachenko, A., et al.: A&A 556 (id A52), 12 (2013)MathSciNetGoogle Scholar
  364. 364.
    Torres, G., et al.: ApJ 727, 24 (2011)ADSGoogle Scholar
  365. 365.
    Torres, G., et al.: A&ARv 18, 67–126 (2010)ADSGoogle Scholar
  366. 366.
    Tran, K., et al.: ApJ 774, 81 (2013)ADSGoogle Scholar
  367. 367.
    Traub, W.A.: ApJ 745, 10 (2012)Google Scholar
  368. 368.
    Tsiganis, K., et al.: Nature 435, 459–461 (2005)ADSGoogle Scholar
  369. 369.
    Tusnski, L.R.M., Valio, A.: ApJ 743, 97 (2011)ADSGoogle Scholar
  370. 370.
    Udry, S., Santos, N.C.: ARA&A 45, 397–439 (2007)ADSGoogle Scholar
  371. 371.
    Uytterhoeven, K., et al.: A&A 534 (A125), 70 (2011)Google Scholar
  372. 372.
    Valencia, D., et al.: Icarus 181, 545–554 (2006)ADSGoogle Scholar
  373. 373.
    Valencia, D., et al.: ApJ 665, 1413–1420 (2007)ADSGoogle Scholar
  374. 374.
    Van Eylen, V., et al.: ApJ 782, 1 (id.14), 13 (2014)ADSGoogle Scholar
  375. 375.
    Van Grootel, V., et al.: A&A 553, 97 (2013)ADSGoogle Scholar
  376. 376.
    Vazan, A., Helled, R.: ApJ 756, 90 (2012)ADSGoogle Scholar
  377. 377.
    Vidal-Madjar, A., et al.: Nature 422, 143–146 (2003)ADSGoogle Scholar
  378. 378.
    Vidal-Madjar, A., et al.: ApJ 604, 69–72 (2004)ADSGoogle Scholar
  379. 379.
    Vidal-Madjar, A., et al.: A&A 527, 110 (2011)ADSGoogle Scholar
  380. 380.
    Vigan, A., et al.: A&A 544, A9 (2012)ADSGoogle Scholar
  381. 381.
    Wagner, F.W., et al.: Icarus 214, 366–376 (2011)ADSGoogle Scholar
  382. 382.
    Wagner, F.W., et al.: A&A 541, A103–A116 (2012)ADSGoogle Scholar
  383. 383.
    Wells, M., et al. AAS 221, #354.15 (2013)ADSGoogle Scholar
  384. 384.
    Welsh, W.F., et al.: ApJL 713, L145–L149 (2010)ADSGoogle Scholar
  385. 385.
    Welsh, W.F., et al.: Nature 481, 475–479 (2012)ADSGoogle Scholar
  386. 386.
    West, M.J., et al.: ApJ 730, 122 (2011)ADSGoogle Scholar
  387. 387.
    Wheatley, P., et al. EPJWC 47, id.13002 (2013)Google Scholar
  388. 388.
    White, T.R., et al.: ApJ 743, 161 (2011)ADSGoogle Scholar
  389. 389.
    Winn, J.N., et al.: ApJL 741, L1 (2011)ADSGoogle Scholar
  390. 390.
    Wu, Y., Lithwick, Y. ApJ 772, 74 (2013)ADSGoogle Scholar
  391. 391.
    Zahn, J.-P.: A&A 265, 115 (1992)ADSGoogle Scholar
  392. 392.
    Zeng, L., Sasselov, D.: PASP 125, 227 (2013)ADSGoogle Scholar
  393. 393.
    Zhao, J., et al.: ApJ 557, 384–388 (2001)ADSGoogle Scholar
  394. 394.
    Zucker, S., et al.: ApJ 670, 1326–1330 (2007)ADSGoogle Scholar
  395. 395.
    Zwintz, K., et al.: A&A 550, A121 (2013)ADSGoogle Scholar
  396. 396.
    Diaz, R.F., et al.: MNRAC, Vol. 441 (2014)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • H. Rauer
    • 1
    • 2
  • C. Catala
    • 3
  • C. Aerts
    • 4
  • T. Appourchaux
    • 5
  • W. Benz
    • 6
  • A. Brandeker
    • 7
  • J. Christensen-Dalsgaard
    • 8
  • M. Deleuil
    • 9
  • L. Gizon
    • 10
    • 25
  • M.-J. Goupil
    • 3
  • M. Güdel
    • 11
  • E. Janot-Pacheco
    • 12
  • M. Mas-Hesse
    • 13
  • I. Pagano
    • 14
  • G. Piotto
    • 15
  • D. Pollacco
    • 16
  • Ċ. Santos
    • 17
  • A. Smith
    • 18
  • J.-C. Suárez
    • 19
  • R. Szabó
    • 20
  • S. Udry
    • 21
  • V. Adibekyan
    • 17
  • Y. Alibert
    • 6
  • J.-M. Almenara
    • 9
  • P. Amaro-Seoane
    • 22
  • M. Ammler-von Eiff
    • 23
  • M. Asplund
    • 42
  • E. Antonello
    • 24
  • S. Barnes
    • 26
  • F. Baudin
    • 5
  • K. Belkacem
    • 3
  • M. Bergemann
    • 27
  • G. Bihain
    • 26
  • A. C. Birch
    • 10
  • X. Bonfils
    • 40
  • I. Boisse
    • 17
  • A. S. Bonomo
    • 28
  • F. Borsa
    • 24
  • I. M. Brandão
    • 17
  • E. Brocato
    • 29
  • S. Brun
    • 30
  • M. Burleigh
    • 31
  • R. Burston
    • 10
  • J. Cabrera
    • 1
  • S. Cassisi
    • 33
  • W. Chaplin
    • 34
  • S. Charpinet
    • 35
  • C. Chiappini
    • 26
  • R. P. Church
    • 36
  • Sz. Csizmadia
    • 1
  • M. Cunha
    • 17
  • M. Damasso
    • 15
    • 28
  • M. B. Davies
    • 36
  • H. J. Deeg
    • 37
  • R. F. Díaz
    • 21
  • S. Dreizler
    • 25
  • C. Dreyer
    • 1
    • 2
  • P. Eggenberger
    • 21
  • D. Ehrenreich
    • 21
  • P. Eigmüller
    • 1
  • A. Erikson
    • 1
  • R. Farmer
    • 39
  • S. Feltzing
    • 36
  • F. de Oliveira Fialho
    • 38
  • P. Figueira
    • 17
  • T. Forveille
    • 40
  • M. Fridlund
    • 1
  • R. A. García
    • 30
  • P. Giommi
    • 41
  • G. Giuffrida
    • 29
    • 41
  • M. Godolt
    • 1
  • J. Gomes da Silva
    • 17
  • T. Granzer
    • 26
  • J. L. Grenfell
    • 1
  • A. Grotsch-Noels
    • 43
  • E. Günther
    • 23
  • C. A. Haswell
    • 39
  • A. P. Hatzes
    • 23
  • G. Hébrard
    • 44
  • S. Hekker
    • 10
    • 45
  • R. Helled
    • 46
  • K. Heng
    • 6
  • J. M. Jenkins
    • 47
  • A. Johansen
    • 36
  • M. L. Khodachenko
    • 48
  • K. G. Kislyakova
    • 48
  • W. Kley
    • 49
  • U. Kolb
    • 39
  • N. Krivova
    • 10
  • F. Kupka
    • 50
  • H. Lammer
    • 48
  • A. F. Lanza
    • 14
  • Y. Lebreton
    • 3
  • D. Magrin
    • 51
  • P. Marcos-Arenal
    • 4
  • P. M. Marrese
    • 29
    • 41
  • J. P. Marques
    • 25
  • J. Martins
    • 17
  • S. Mathis
    • 30
  • S. Mathur
    • 52
  • S. Messina
    • 14
  • A. Miglio
    • 34
  • J. Montalban
    • 43
  • M. Montalto
    • 17
  • M. J. P. F. G. Monteiro
    • 17
  • H. Moradi
    • 53
  • E. Moravveji
    • 4
  • C. Mordasini
    • 54
  • T. Morel
    • 43
  • A. Mortier
    • 17
  • V. Nascimbeni
    • 15
  • R. P. Nelson
    • 60
  • M. B. Nielsen
    • 25
  • L. Noack
    • 32
  • A. J. Norton
    • 39
  • A. Ofir
    • 25
  • M. Oshagh
    • 17
  • R.-M. Ouazzani
    • 3
  • P. Pápics
    • 4
  • V. C. Parro
    • 55
  • P. Petit
    • 56
  • B. Plez
    • 57
  • E. Poretti
    • 24
  • A. Quirrenbach
    • 58
  • R. Ragazzoni
    • 51
  • G. Raimondo
    • 33
  • M. Rainer
    • 24
  • D. R. Reese
    • 43
  • R. Redmer
    • 59
  • S. Reffert
    • 58
  • B. Rojas-Ayala
    • 17
  • I. W. Roxburgh
    • 60
  • S. Salmon
    • 43
  • A. Santerne
    • 17
  • J. Schneider
    • 3
  • J. Schou
    • 10
  • S. Schuh
    • 10
  • H. Schunker
    • 10
  • A. Silva-Valio
    • 61
  • R. Silvotti
    • 28
  • I. Skillen
    • 62
  • I. Snellen
    • 63
  • F. Sohl
    • 1
  • S. G. Sousa
    • 17
  • A. Sozzetti
    • 28
  • D. Stello
    • 69
  • K. G. Strassmeier
    • 26
  • M. Švanda
    • 64
  • Gy. M. Szabó
    • 20
    • 65
  • A. Tkachenko
    • 4
  • D. Valencia
    • 66
  • V. Van Grootel
    • 43
  • S. D. Vauclair
    • 35
  • P. Ventura
    • 29
  • F. W. Wagner
    • 1
  • N. A. Walton
    • 67
  • J. Weingrill
    • 26
  • S. C. Werner
    • 68
  • P. J. Wheatley
    • 16
  • K. Zwintz
    • 4
  1. 1.Institute of Planetary Research, German Aerospace CenterBerlinGermany
  2. 2.Department of Astronomy and AstrophysicsBerlin University of TechnologyBerlinGermany
  3. 3.LESIA, Observatoire de Paris, PSL Research University, CNRS, UPMC, University Paris-DiderotMeudon CedexFrance
  4. 4.Instituut voor Sterrenkunde, KU LeuvenLeuvenBelgium
  5. 5.Institut d’Astrophysique SpatialeUniversité Paris 11OrsayFrance
  6. 6.Center for Space and HabitabilityUniversity of Bern, Physikalisches InstitutBernSwitzerland
  7. 7.Department of Astronomy, AlbaNova University CenterStockholm UniversityStockholmSweden
  8. 8.Stellar Astrophysics Centre, Department of Physics and AstronomyAarhus UniversityAarhus CDenmark
  9. 9.Laboratoire d’Astrophysique de MarseilleMarseille Cedex 13France
  10. 10.Max-Planck-Institut für SonnensystemforschungGöttingenGermany
  11. 11.Institute for AstronomyUniversity of ViennaViennaAustria
  12. 12.Instituto de Astronomia, Geofísica e Ciências Atmosféricas - IAG/USPSão PauloBrazil
  13. 13.Centro de Astrobiología (CSIC–INTA)MadridSpain
  14. 14.INAF- Osservatorio Astrofisico di CataniaCataniaItaly
  15. 15.Dipartimento di Fisica e Astronomia “Galileo Galilei”Università di PadovaPadovaItaly
  16. 16.Department of PhysicsWarwick UniversityCoventry CV4 7ALUK
  17. 17.Centro de AstrofísicaUniversidade do PortoPortoPortugal
  18. 18.Mullard Space Science LaboratoryUniversity College LondonLondonUK
  19. 19.Instituto de Astrofísica de Andalucía – CSICGranadaSpain
  20. 20.Konkoly Observatory of the Hungarian Academy of ScienceBudapestHungary
  21. 21.Observatoire de GenèveSauvernySwitzerland
  22. 22.Max Planck Institut für Gravitationsphysik (Albert-Einstein-Institut)PotsdamGermany
  23. 23.Thüringer Landessternwarte TautenburgTautenburgGermany
  24. 24.INAF-Osservatorio Astronomico di BreraMerateItaly
  25. 25.Institute for Astrophysics, Georg-August-Universität GöttingenGöttingenGermany
  26. 26.Leibniz Institute for AstrophysicsPotsdamGermany
  27. 27.Institute of AstronomyUniversity of CambridgeCambridgeUK
  28. 28.INAF - Osservatorio Aastrofisico di TorinoPino TorineseItaly
  29. 29.INAF - Osservatorio Astronomico di RomaMonte Porzio CatoneItaly
  30. 30.CEA, DSM/IRFU/Service d’AstrophysiqueGif-sur-YvetteFrance
  31. 31.Department of Physics and AstronomyUniversity of LeicesterLeicester LE1 7RHUK
  32. 32.Royal Observatory of BelgiumBrusselsBelgium
  33. 33.INAF - Osservatorio Astronomico di TeramoTeramoItaly
  34. 34.School of Physics and AstronomyUniversity of BirminghamBirminghamUK
  35. 35.Université de Toulouse, UPS-OMP, IRAPToulouseFrance
  36. 36.Lund ObservatoryLundSweden
  37. 37.Instituto de Astrofísica de CanariasTenerifeSpain
  38. 38.Laboratory of Automation and ControlPolytechnic School of the University of São PauloSão PauloBrazil
  39. 39.Department of Physical SciencesThe Open UniversityWalton HallUK
  40. 40.Observatoire de Grenoble, Institut de Planetologie et d’Astrophysique de GrenobleGrenoble Cedex 9France
  41. 41.ASI Science Data Center, Via del Politecnico sncRomeItaly
  42. 42.Research School of Astronomy and AstrophysicsAustralian National UniversityWeston ACTAustralia
  43. 43.Institut d’Astrophysique et Géophysique de l’Université de LiègeLiègeBelgium
  44. 44.Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie CurieParisFrance
  45. 45.Sterrenkundig Instituut Anton PannekoekUniversiteit van AmsterdamAmsterdamThe Netherlands
  46. 46.Department of GeophysicsAtmospheric and Planetary Sciences, Tel-Aviv UniversityTel-AvivIsrael
  47. 47.SETI Institute, NASA Ames Research CenterMountain ViewUSA
  48. 48.Austrian Academy of SciencesGrazAustria
  49. 49.Institut für Astronomie and AstrophysikUniversität TübingenTübingenGermany
  50. 50.Fakultät für MathematikUniversität WienWienAustria
  51. 51.INAF - Astronomical Observatory of PadovaPadua,Italy
  52. 52.Space Science InstituteBoulderUSA
  53. 53.Monash Centre for Astrophysics, School of Mathematical SciencesMonash UniversityVictoriaAustralia
  54. 54.Planet and Star Formation Department, Max Planck Institute for AstronomyHeidelbergGermany
  55. 55.Instituto Mauá de TecnologiaSão PauloBrazil
  56. 56.Observatoire Midi-PyrenéesToulouse CedexFrance
  57. 57.Laboratoire Univers et Particules de MontpellierUniversité Montpellier 2, CNRSMontpellier cedex 5France
  58. 58.ZAH, Landessternwarte, Universität HeidelbergHeidelbergGermany
  59. 59.Institute of PhysicsUniversity of RostockRostockGermany
  60. 60.Astronomy Unit, School of Physics and AstronomyQueen Mary University of LondonLondonUK
  61. 61.CRAAM - Mackenzie UniversitySao PauloBrazil
  62. 62.Isaac Newton Group of Telescopes, Astronomy GroupSanta Cruz de La PalmaSpain
  63. 63.Leiden ObservatoryLeiden UniversityLeidenThe Netherlands
  64. 64.Astronomical Institute, Faculty of Mathematics and PhysicsCharles University in PraguePrague 8Czech Republic
  65. 65.ELTE Gothard Astrophysical ObservatorySzombathelyHungary
  66. 66.Atmosphere and Planetary Sciences DepartmentMassachusetts Institute of TechnologyCambridgeUSA
  67. 67.Institute of AstronomyUniversity of CambridgeCambridgeUK
  68. 68.Comparative Planetology, Centre for Earth Evolution and DynamicsUniversity of OsloOsloNorway
  69. 69.Sydney Institute for Astronomy (SIfA), School of PhysicsUniversity of SydneySydneyAustralia

Personalised recommendations