Experimental Astronomy

, Volume 37, Issue 2, pp 225–238 | Cite as

PACS photometer calibration block analysis

  • A. MoórEmail author
  • T. G. Müller
  • C. Kiss
  • Z. Balog
  • N. Billot
  • G. Marton
Original Article


The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5 % (standard deviation) or about 8 % peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2 % (stdev) or 2 % in the blue, 3 % in the green and 5 % in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic heat influences via the Kevlar wires which connect the bolometers with the PACS Focal Plane Unit. No aging effect or degradation of the photometric system during the mission lifetime has been found.


PACS bolometers Calibration block observations Long term behaviour of bolometers 



We thank our anonymous referee whose comments significantly improved the manuscript. This research has been supported by the PECS programme of the Hungarian Space Office and the European Space Agency (contact number: 98073). CK and AM acknowledge the support of the Hungarian Research Fund (OTKA K-104607) and that of the Bolyai Research Fellowship of the Hungarian Academy of Sciences.


  1. 1.
    Balog, Z., Müller, T., Nielbock, M., Altieri, B., Klaas, U., Linz, H., Lutz, D., Moór, A., Billot, N., Sauvage, M., Okomura, K.: The Herschel-PACS photometer calibration: point-source flux calibration. Exp. Astron. this issue (2013)Google Scholar
  2. 2.
    Billot, N., Sauvage, M., Rodriguez, L., et al.: CEA bolometer arrays: the first year in space. SPIE 7741, 1 (2010)ADSGoogle Scholar
  3. 3.
    Klaas, U., Nielbock, M.: PACS Performance Verification Phase Plan, Issue 1.6, PICC-MA-PL-001, available from (2009)
  4. 4.
    Müller, T.: Pacs FM (ILT, IST, TVTB, CoP) Full Functional Test: 413 Thermal Behaviour in Photometry, available from (2009)
  5. 5.
    Nielbock, N., Müller, T., Balog, Z., Klaas, U., Linz, H.: The Herschel PACS photometer calibration: a time dependent flux calibration for the PACS chopped photometry AOT mode. Exp. Astron. this issue (2013)Google Scholar
  6. 6.
    Pilbratt, G.L., Riedinger, J.R., Passvogel, T., et al.: Herschel space observatory. An ESA facility for far-infrared and submillimetre astronomy. A&A 518, L1 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Poglitsch, A., Waelkens, C., Geis, N., et al.: The Herschel photodetector array camera & pectrometer (PACS): design and in-flight operation and scientific performance. A&A 518, L2 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • A. Moór
    • 1
    Email author
  • T. G. Müller
    • 2
  • C. Kiss
    • 1
  • Z. Balog
    • 3
  • N. Billot
    • 4
  • G. Marton
    • 1
  1. 1.Konkoly Observatory, MTA CSFKBudapestHungary
  2. 2.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany
  3. 3.Max-Planck-Institut für AstronomieHeidelbergGermany
  4. 4.Instituto de Radio Astronomía MilimétricaGranadaSpain

Personalised recommendations