Experimental Astronomy

, Volume 36, Issue 1–2, pp 235–318 | Cite as

Reionization and the Cosmic Dawn with the Square Kilometre Array

  • Garrelt MellemaEmail author
  • Léon V. E. Koopmans
  • Filipe A. Abdalla
  • Gianni Bernardi
  • Benedetta Ciardi
  • Soobash Daiboo
  • A. G. de Bruyn
  • Kanan K. Datta
  • Heino Falcke
  • Andrea Ferrara
  • Ilian T. Iliev
  • Fabio Iocco
  • Vibor Jelić
  • Hannes Jensen
  • Ronniy Joseph
  • Panos Labroupoulos
  • Avery Meiksin
  • Andrei Mesinger
  • André R. Offringa
  • V. N. Pandey
  • Jonathan R. Pritchard
  • Mario G. Santos
  • Dominik J. Schwarz
  • Benoit Semelin
  • Harish Vedantham
  • Sarod Yatawatta
  • Saleem Zaroubi
Original Article


The Square Kilometre Array (SKA) will have a low frequency component (SKA-low) which has as one of its main science goals the study of the redshifted 21 cm line from the earliest phases of star and galaxy formation in the Universe. This 21 cm signal provides a new and unique window both on the time of the formation of the first stars and accreting black holes and the subsequent period of substantial ionization of the intergalactic medium. The signal will teach us fundamental new things about the earliest phases of structure formation, cosmology and even has the potential to lead to the discovery of new physical phenomena. Here we present a white paper with an overview of the science questions that SKA-low can address, how we plan to tackle these questions and what this implies for the basic design of the telescope.


Cosmology: Observations Dark ages Reionization First stars Diffuse radiation Intergalactic medium Radio lines: General Techniques: Interferometric 


  1. 1.
    Adshead, P.J., Furlanetto, S.R.: Reionization and the large-scale 21-cm cosmic microwave background cross-correlation. Mon. Not. R. Astron. Soc. 384, 291 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    Aghanim, N., Majumdar, S., Silk, J.: Secondary anisotropies of the CMB. Rep. Prog. Phys. 71, 066902 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Ahn, K., Hong, S.E., Park, C., Kim, J., Iliev, I.J., Mellema, G.: 2D genus topology of 21-cm differential brightness temperature during cosmic reionization. ArXiv:1008.3914 (2010)
  4. 4.
    Ali, S.S., Bharadwaj, S., Chengalur, J.N.: Foregrounds for redshifted 21-cm studies of reionization: giant meter wave radio telescope 153-MHz observations. Mon. Not. R. Astron. Soc. 385, 2166 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    Alvarez, M.A., Komatsu, E., Doré, O., Shapiro, P.R.: The cosmic reionization history as revealed by the cosmic microwave background doppler-21 cm correlation. Astrophys. J. 647, 840 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    Baek, S., Semelin, B., Di Matteo, P., Revaz, Y., Combes, F.: Reionization by UV or X-ray sources. Astron. Astrophys. 523, A4 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Barkana, R.: Separating out the Alcock-Paczyński effect on 21-cm fluctuations. Mon. Not. R. Astron. Soc. 372, 259 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Barkana, R., Loeb, A.: A method for separating the physics from the astrophysics of high-redshift 21 centimeter fluctuations. Astrophys. J. 624, L65 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Barkana, R., Loeb, A.: Detecting the earliest galaxies through two new sources of 21 centimeter fluctuations. Astrophys. J. 626, 1 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    Barkana, R., Loeb, A.: Light-cone anisotropy in 21-cm fluctuations during the Epoch of Reionization. Mon. Not. R. Astron. Soc. 372, L43 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Barkana, R., Loeb, A.: The difference PDF of 21-cm fluctuations: a powerful statistical tool for probing cosmic reionization. Mon. Not. R. Astron. Soc. 384, 1069 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    Basu, K., Hernández-Monteagudo, C., Sunyaev, R.A.: CMB observations and the production of chemical elements at the end of the dark ages. Astron. Astrophys. 416, 447 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Bell, J.F., Ekers, R.D., Bunton, J.D.: Radio frequency interference mitigation strategies: summary of the E. & F. White conference held in Sydney, Australia, December 1999. Publ. Astron. Soc. Aust. 17, 255 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Bernardi, G., et al.: Foregrounds for observations of the cosmological 21 cm line. I. First Westerbork measurements of Galactic emission at 150 MHz in a low latitude field. Astron. Astrophys. 500, 965 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Bernardi, G., et al.: Foregrounds for observations of the cosmological 21 cm line. II. Westerbork observations of the fields around 3C 196 and the North Celestial Pole. Astron. Astrophys. 522, A67 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    Bernardi, G., Mitchell, D.A., Ord, S.M., Greenhill, L.J., Pindor, B., Wayth, R.B., Wyithe, J.S.B.: Subtraction of point sources from interferometric radio images through an algebraic forward modelling scheme. Mon. Not. R. Astron. Soc. 413, 411 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Bertone, G., Hooper, D., Silk, J.: Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    Bharadwaj, S., Ali, S.S.: The cosmic microwave background radiation fluctuations from HI perturbations prior to reionization. Mon. Not. R. Astron. Soc. 352, 142 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Boonstra, A.J., Weber, R., Colom, P.: RFI mitigation strategies for phased-array SKA concepts In: Proceedings of Wide Field Astronomy & Technology for the Square Kilometre Array (SKADS 2009), 4–6 November 2009.Chateau de Limelette, Belgium (2009). Published online at
  20. 20.
    Bourgois, G.: About the ergodicity hypothesis in random propagation studies. Astron. Astrophys. 102, 212 (1981)ADSGoogle Scholar
  21. 21.
    Bouwens, R.J., et al.: A candidate redshift z\(\sim \)10 galaxy and rapid changes in that population at an age of 500Myr. Nature 469, 504 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Bouwens, R.J., et al.: Discovery of z\(\sim \)8 galaxies in the hubble ultra deep field from ultra-deep WFC3/IR observations. Astrophys. J. 709, L133 (2010)ADSCrossRefGoogle Scholar
  23. 23.
    Bouwens, R.J., et al.: Lower-luminosity galaxies could reionize the Universe: very steep faint-end slopes to the UV luminosity functions at z \(\geq \) 5–8 from the HUDF09 WFC3/IR observations. Astrophys. J. 752, L5 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    Bowman, J.D., Morales, M.F., Hewitt, J.N.: The sensitivity of first-generation Epoch of Reionization observatories and their potential for differentiating theoretical power spectra. Astrophys. J. 638, 20 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Bowman, J.D., Morales, M.F., Hewitt, J.N.: Constraints on fundamental cosmological parameters with upcoming redshifted 21 cm observations. Astrophys. J. 661, 1 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Bowman, J.D., Rogers, A.E.E.: A lower limit of \(\Delta \)z¿0.06 for the duration of the reionization epoch. Nature 468, 796 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    Boyle, B.J., Shanks, T., Croom, S.M., Smith, R.J., Miller, L., Loaring, N., Heymans, C.: The 2dF QSO redshift survey—I. The optical luminosity function of quasi-stellar objects. Mon. Not. R. Astron. Soc. 317, 1014 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Brandenberger, R.H., Danos, R.J., Hernández, O.F., Holder, G.P.: The 21 cm signature of cosmic string wakes. J. Cosmol. Astropart. Phys. 12, 28 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Braun, R.: Understanding synthesis imaging dynamic range. Astron. Astrophys. 551, A91 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    Bunker, A.J., et al.: The contribution of high-redshift galaxies to cosmic reionization: new results from deep WFC3 imaging of the hubble ultra deep field. Mon. Not. R. Astron. Soc. 409, 855 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Burns, J.O., et al.: Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE). Adv. Space Res. 49, 433 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Carilli, C.L.: Intensity mapping of molecular gas during cosmic reionization. Astrophys. J. 730, L30 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    Carilli, C.L., Gnedin, N.Y., Owen, F.: H I 21 centimeter absorption beyond the Epoch of Reionization. Astrophys. J. 577, 22 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Carilli, C.L., et al.: Ionization Near Zones Associated with Quasars at z \(\sim \) 6. Astrophys. J. 714, 834 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Carilli, C.L., Wang, R., van Hoven, M.B., Dwarakanath, K., Chengalur, J.N., Wyithe, S.: A Search for H I 21 cm absorption toward the highest redshift (z\(\sim \)5.2) radio-loud objects. Astron. J. 133, 2841 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    Chapman, E., et al.: The scale of the problem: recovering images of reionization with generalized morphological component analysis. Mon. Not. R. Astron. Soc. 429, 165 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Chapman, E., et al.: Foreground removal using FASTICA: a showcase of LOFAR-EoR. Mon. Not. R. Astron. Soc. 423, 2518 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Chuzhoy, L., Alvarez, M.A., Shapiro, P.R.: Recognizing the first radiation sources through their 21 cm signature. Astrophys. J. 648, L1 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Chuzhoy, L., Shapiro, P.R.: Ultraviolet pumping of hyperfine transitions in the light elements, with application to 21 cm hydrogen and 92 cm deuterium lines from the early universe. Astrophys. J. 651, 1 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    Ciardi, B., Bolton, J.S., Maselli, A., Graziani, L.: The effect of intergalactic helium on hydrogen reionization: implications for the sources of ionizing photons at z\(>\)6. Mon. Not. R. Astron. Soc. 423, 558 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    Ciardi, B., Ferrara, A.: The first cosmic structures and their effects. Space Sci. Rev. 116, 625 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    Ciardi, B., et al.: Prospects for detecting the 21 cm forest from the diffuse intergalactic medium with LOFAR. Mon. Not. R. Astron. Soc. 428, 1755 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Cohen, A.S., Röttgering, H.J.A.: Probing fine-scale ionospheric structure with the very large array radio telescope. Astron. J. 138, 439 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Cook, R.D., Tsai, C.-L., Wei, B.C.: Bias in nonlinear regression. Biometrika 73(3), 615–623 (1986). doi: 10.1093/biomet/73.3.615 MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Cooray, A.: Cross-correlation studies between CMB temperature anisotropies and 21 cm fluctuations. Phys. Rev. D 70, 063509 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    Cooray, A., Gong, Y., Smidt, J., Santos, M.G.: The near-infrared background intensity and anisotropies during the Epoch of Reionization. Astrophys. J. 756, 92 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    Cooray, A., et al.: Near-infrared background anisotropies from diffuse intrahalo light of galaxies. Nature 490, 514 (2012)ADSCrossRefGoogle Scholar
  48. 48.
    Cristiani, S., et al.: The space density of high-redshift QSOs in the great observatories origins deep survey. Astrophys. J. 600, L119 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Datta, K.K., Choudhury, T.R., Bharadwaj, S.: The multifrequency angular power spectrum of the Epoch of Reionization 21-cm signal. Mon. Not. R. Astron. Soc. 378, 119 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    Datta, K.K., Friedrich, M.M., Mellema, G., Iliev, I.T., Shapiro, P.R.: Prospects of observing a quasar H II region during the Epoch of Reionization with the redshifted 21-cm signal. Mon. Not. R. Astron. Soc. 424, 762 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    Datta, K.K., Majumdar, S., Bharadwaj, S., Choudhury, T.R.: Simulating the impact of HI fluctuations on matched filter search for ionized bubbles in redshifted 21-cm maps. Mon. Not. R. Astron. Soc. 391, 1900 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    Datta, K.K., Mellema, G., Mao, Y., Iliev, I.T., Shapiro, P.R., Ahn, K.: Light-cone effect on the reionization 21-cm power spectrum. Mon. Not. R. Astron. Soc. 424, 1877 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    de Oliveira-Costa, A., Tegmark, M., Gaensler, B.M., Jonas, J., Landecker, T.L., Reich, P.: A model of diffuse Galactic radio emission from 10 MHz to 100 GHz. Mon. Not. R. Astron. Soc. 388, 247 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    Di Matteo, T., Ciardi, B., Miniati, F.: The 21-cm emission from the reionization epoch: extended and point source foregrounds. Mon. Not. R. Astron. Soc. 355, 1053 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    Doré, O., Holder, G., Alvarez, M., Iliev, I.T., Mellema, G., Pen, U.-L., Shapiro, P.R.: Signature of patchy reionization in the polarization anisotropy of the CMB. Phys. Rev. D 76, 043002 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    Dunkley, J., et al.: The Atacama cosmology telescope: cosmological parameters from the 2008 power spectrum. Astrophys. J. 739, 52 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    Dvorkin, C., Hu, W., Smith, K.M.: B-mode CMB polarization from patchy screening during reionization. Phys. Rev. D 79, 107302 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Eisenstein, D.J., et al.: SDSS-III: massive spectroscopic surveys of the distant universe, the Milky Way, and extra-solar planetary systems. Astron. J. 142, 72 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    Ellis, R.S., et al.: The abundance of star-forming galaxies in the redshift range 8.5–12: new results from the 2012 hubble ultra deep field campaign. Astrophys. J. 763, L7 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    Fan, X., et al.: Constraining the evolution of the ionizing background and the Epoch of Reionization with z\(\sim \)6 quasars. II. A sample of 19 quasars. Astron. J. 132, 117 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    Fernandez, E.R., Iliev, I.T., Komatsu, E., Shapiro, P.R.: The cosmic near infrared background. III. Fluctuations, reionization, and the effects of minimum mass and self-regulation. Astrophys. J. 750, 20 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    Fernandez, E.R., Komatsu, E., Iliev, I.T., Shapiro, P.R.: The cosmic near-infrared background. II. Fluctuations. Astrophys. J. 710, 1089 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    Fialkov, A., Barkana, R., Tseliakhovich, D., Hirata, C.M.: Impact of the relative motion between the dark matter and baryons on the first stars: semi-analytical modelling. Mon. Not. R. Astron. Soc. 424, 1335 (2012)ADSCrossRefGoogle Scholar
  64. 64.
    Field, G.B.: The time relaxation of a resonance-line profile. Astrophys. J. 129, 551 (1959)ADSCrossRefGoogle Scholar
  65. 65.
    Fowler, J.W., et al.: The Atacama cosmology telescope: a measurement of the 600 \(<\) ell \(<\) 8000 cosmic microwave background power spectrum at 148 GHz. Astrophys. J. 722, 1148 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    Fridman, P.A., Baan, W.A.: RFI mitigation methods in radio astronomy. Astron. Astrophys. 378, 327 (2001)ADSCrossRefGoogle Scholar
  67. 67.
    Friedrich, M.M., Mellema, G., Alvarez, M.A., Shapiro, P.R., Iliev, I.T.: Topology and sizes of H II regions during cosmic reionization. Mon. Not. R. Astron. Soc. 413, 1353 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    Furlanetto, S.R.: The 21-cm forest. Mon. Not. R. Astron. Soc. 370, 1867 (2006)ADSCrossRefGoogle Scholar
  69. 69.
    Furlanetto, S.R.: The global 21-centimeter background from high redshifts. Mon. Not. R. Astron. Soc. 371, 867 (2006)ADSCrossRefGoogle Scholar
  70. 70.
    Furlanetto, S.R., Loeb, A.: The 21 centimeter forest: radio absorption spectra as probes of minihalos before reionization. Astrophys. J. 579, 1 (2002)ADSCrossRefGoogle Scholar
  71. 71.
    Furlanetto, S.R., Oh, S.P., Briggs, F.H.: Cosmology at low frequencies: the 21 cm transition and the high-redshift universe. Phys. Rep. 433, 181 (2006)ADSCrossRefGoogle Scholar
  72. 72.
    Furlanetto, S.R., Oh, S.P., Pierpaoli, E.: Effects of dark matter decay and annihilation on the high-redshift 21 cm background. Phys. Rev. D 74, 103502 (2006)ADSCrossRefGoogle Scholar
  73. 73.
    Furlanetto, S.R., Zaldarriaga, M., Hernquist, L.: The growth of H II regions during reionization. Astrophys. J. 613, 1 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    Galli, S., Iocco, F., Bertone, G., Melchiorri, A.: CMB constraints on dark matter models with large annihilation cross section. Phys. Rev. D 80, 023505 (2009)ADSCrossRefGoogle Scholar
  75. 75.
    Geil, P.M., Gaensler, B.M., Wyithe, J.S.B.: Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization. Mon. Not. R. Astron. Soc. 418, 516 (2011)ADSCrossRefGoogle Scholar
  76. 76.
    Geil, P.M., Wyithe, J.S.B.: The impact of a percolating IGM on redshifted 21-cm observations of quasar HII regions. Mon. Not. R. Astron. Soc. 386, 1683 (2008)ADSCrossRefGoogle Scholar
  77. 77.
    Ghosh, A., Prasad, J., Bharadwaj, S., Ali, S.S., Chengalur, J.N.: Characterizing foreground for redshifted 21 cm radiation: 150 MHz Giant Metrewave Radio Telescope observations. Mon. Not. R. Astron. Soc. 426, 3295 (2012)ADSCrossRefGoogle Scholar
  78. 78.
    Gleser, L., Nusser, A., Benson, A.J.: Decontamination of cosmological 21-cm maps. Mon. Not. R. Astron. Soc. 391, 383 (2008)ADSCrossRefGoogle Scholar
  79. 79.
    Gleser, L., Nusser, A., Ciardi, B., Desjacques, V.: The morphology of cosmological reionization by means of Minkowski functionals. Mon. Not. R. Astron. Soc. 370, 1329 (2006)ADSCrossRefGoogle Scholar
  80. 80.
    Gluscevic, V.: Statistics of 21-cm fluctuations in cosmic reionization simulations: PDFs and difference PDFs. Mon. Not. R. Astron. Soc. 408, 2373 (2010)ADSCrossRefGoogle Scholar
  81. 81.
    Gnedin N.Y., Jaffe A.H.: Secondary cosmic microwave background anisotropies from cosmological reionization. Astrophys. J. 551, 3 (2001)ADSCrossRefGoogle Scholar
  82. 82.
    Golap, K., Shankar, N.U., Sachdev, S., Dodson, R., Sastry, C.V.: A low frequency radio telescope at Mauritius for a southern sky survey. J. Astrophys. Astron. 19, 35 (1998)ADSCrossRefGoogle Scholar
  83. 83.
    Gong, Y., Cooray, A., Silva, M., Santos, M.G., Bock, J., Bradford, C.M., Zemcov, M.: Intensity mapping of the [C II] fine structure line during the Epoch of Reionization. Astrophys. J. 745, 49 (2012)ADSCrossRefGoogle Scholar
  84. 84.
    Gong, Y., Cooray, A., Silva, M.B., Santos, M.G., Lubin P.: Probing reionization with intensity mapping of molecular and fine-structure lines. Astrophys. J. 728, L46 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    González-Serrano, J.I., Carballo, R., Vigotti, M., Benn, C.R., de Zotti, G., Fanti, R., Mack, K.H., Holt, J.: Decline of the space density of quasars between z\(=\)2 and z\(=\)4. Balt. Astron. 14, 374 (2005)ADSGoogle Scholar
  86. 86.
    Gorjian, V., Wright, E.L., Chary, R.R.: Tentative detection of the cosmic infrared background at 2.2 and 3.5 microns using ground-based and space-based observations. Astrophys. J. 536, 550 (2000)ADSCrossRefGoogle Scholar
  87. 87.
    Greenhill, L.J., Bernardi, G.: HI Epoch of Reionization arrays. ArXiv:1201.1700 (2012)
  88. 88.
    Hales, S.E.G., Baldwin, J.E., Warner, P.J.: The 6C survey of radio sources. II—the zone delta = 30–51 deg, alpha = 08 h30 m–17 h30 m. Mon. Not. R. Astron. Soc. 919 (1988)Google Scholar
  89. 89.
    Harker, G., et al.: Non-parametric foreground subtraction for 21-cm epoch of reionization experiments. Mon. Not. R. Astron. Soc. 397, 1138 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    Harker, G.J.A., et al.: Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics. Mon. Not. R. Astron. Soc. 393, 1449 (2009)ADSCrossRefGoogle Scholar
  91. 91.
    Harker, G., et al.: Power spectrum extraction for redshifted 21-cm epoch of reionization experiments: the LOFAR case. Mon. Not. R. Astron. Soc. 405, 2492 (2010)ADSGoogle Scholar
  92. 92.
    Harker, G., Pritchard, J., Burns, J., Bowman, J.: Signal extraction for sky-averaged 21-cm experiments In: American Astronomical Society Meeting Abstracts, vol. 219, p 304.01 (2012)Google Scholar
  93. 93.
    Hauser, M.G., Dwek, E.: The cosmic infrared background: measurements and implications. Annu. Rev. Astron. Astrophys. 39, 249 (2001)ADSCrossRefGoogle Scholar
  94. 94.
    Hewish, A.: The diffraction of radio waves in passing through a phase-changing ionosphere. Proc. R. Soc. Lond., A 209, 81 (1951)ADSCrossRefGoogle Scholar
  95. 95.
    Hewish, A.: The diffraction of galactic radio waves as a method of investigating the irregular Q11 structure of the ionosphere. Proc. R. Soc. Lond., A 214, 494 (1952)ADSCrossRefGoogle Scholar
  96. 96.
    Hirata, C.M.: Wouthuysen-Field coupling strength and application to high-redshift 21-cm radiation. Mon. Not. R. Astron. Soc. 367, 259 (2006)ADSCrossRefGoogle Scholar
  97. 97.
    Hui, L., Haiman, Z.: The thermal memory of reionization history. Astrophys. J. 596, 9 (2003)ADSCrossRefGoogle Scholar
  98. 98.
    Ichikawa, K., Barkana, R., Iliev, I.T., Mellema, G., Shapiro, P.R.: Measuring the history of cosmic reionization using the 21-cm probability distribution function from simulations. Mon. Not. R. Astron. Soc. 406, 2521 (2010)ADSCrossRefGoogle Scholar
  99. 99.
    Iliev, I.T., Mellema, G., Pen, U.-L., Merz, H., Shapiro, P.R., Alvarez, M.A.: Simulating cosmic reionization at large scales—I. The geometry of reionization. Mon. Not. R. Astron. Soc. 369, 1625 (2006)ADSCrossRefGoogle Scholar
  100. 100.
    Iliev, I.T., Pen, U.-L., Bond, J.R., Mellema, G., Shapiro, P.R.: The kinetic Sunyaev-Zel’dovich effect from radiative transfer simulations of patchy reionization. Astrophys. J. 660, 933 (2007)ADSCrossRefGoogle Scholar
  101. 101.
    Iliev, I.T., Mellema, G., Pen, U., Bond, J.R., Shapiro, P.R.: Current models of the observable consequences of cosmic reionization and their detectability. Mon. Not. R. Astron. Soc. 384, 863 (2008)ADSCrossRefGoogle Scholar
  102. 102.
    Iliev, I.T., Mellema, G., Shapiro, P.R., Pen, U.-L., Mao, Y., Koda, J., Ahn, K.: Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?Mon. Not. R. Astron. Soc. 423, 2222 (2012)ADSCrossRefGoogle Scholar
  103. 103.
    Intema, H.T., van der Tol, S., Cotton, W.D., Cohen, A.S., van Bemmel, I.M., Röttgering, H.J.A.: Ionospheric calibration of low frequency radio interferometric observations using the peeling scheme. I. Method description and first results. Astron. Astrophys. 501, 1185 (2009)ADSCrossRefGoogle Scholar
  104. 104.
    Ioka, K., Mészáros, P.: Radio afterglows of gamma-ray bursts and hypernovae at high redshift and their potential for 21 centimeter absorption studies. Astrophys. J. 619, 684 (2005)ADSCrossRefGoogle Scholar
  105. 105.
    Jackson, C.: The extragalactic radio sky at faint flux densities. Publ. Astron. Soc. Aust. 22, 36 (2005)ADSCrossRefGoogle Scholar
  106. 106.
    Jelić, V., et al.: A cross-correlation study between the cosmological 21 cm signal and the kinetic Sunyaev-Zel’dovich effect. Mon. Not. R. Astron. Soc. 402, 2279 (2010)ADSCrossRefGoogle Scholar
  107. 107.
    Jelić, V., Zaroubi, S., Labropoulos, P., Bernardi, G., de Bruyn, A.G., Koopmans, L.V.E.: Realistic simulations of the Galactic polarized foreground: consequences for 21-cm reionization detection experiments. Mon. Not. R. Astron. Soc. 409, 1647 (2010)ADSCrossRefGoogle Scholar
  108. 108.
    Jelić, V., et al.: Foreground simulations for the LOFAR-epoch of reionization experiment. Mon. Not. R. Astron. Soc. 389, 1319 (2008)ADSCrossRefGoogle Scholar
  109. 109.
    Jensen, H., Laursen, P., Mellema, G., Iliev, I.T., Sommer-Larsen, J., Shapiro, P.R.: On the use of Ly\(\alpha \) emitters as probes of reionization. Mon. Not. R. Astron. Soc. 428, 1366 (2013)ADSCrossRefGoogle Scholar
  110. 110.
    Jester, S., Falcke, H.: Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev.Q11 53, 1 (2009)CrossRefGoogle Scholar
  111. 111.
    Joudaki, S., Doré, O., Ferramacho, L., Kaplinghat, M., Santos, M.G.: Primordial non-Gaussianity from the 21 cm power spectrum during the Epoch of Reionization. Phys. Rev. Lett. 107, 131304 (2011)ADSCrossRefGoogle Scholar
  112. 112.
    Kashlinsky, A., Arendt, R.G., Mather, J., Moseley, S.H.: Tracing the first stars with fluctuations of the cosmic infrared background. Nature 438, 45 (2005)ADSCrossRefGoogle Scholar
  113. 113.
    Kashlinsky, A., Arendt, R.G., Ashby, M.L.N., Fazio, G.G., Mather, J., Moseley, S.H.: New measurements of the cosmic infrared background fluctuations in deep Spitzer/IRAC survey data and their cosmological implications. Astrophys. J. 753, 63 (2012)ADSCrossRefGoogle Scholar
  114. 114.
    Kazemi, S., Yatawatta, S., Zaroubi, S., Lampropoulos, P., de Bruyn, A.G., Koopmans, L.V.E., Noordam, J.: Radio interferometric calibration using the SAGE algorithm. Mon. Not. R. Astron. Soc. 414, 1656 (2011)ADSCrossRefGoogle Scholar
  115. 115.
    Khatri, R., Wandelt, B.D.: 21-cm radiation: a new probe of variation in the fine-structure constant. Phys. Rev. Lett. 98, 111301 (2007)ADSCrossRefGoogle Scholar
  116. 116.
    Khatri, R., Wandelt, B.D.: Cosmic (super)string constraints from 21 cm radiation. Phys. Rev. Lett. 100, 091302 (2008)ADSCrossRefGoogle Scholar
  117. 117.
    Knox, L.: Precision measurement of the mean curvature. Phys. Rev. D 73, 023503 (2006)ADSCrossRefGoogle Scholar
  118. 118.
    Koopmans, L.V.E.: Ionospheric power-spectrum tomography in radio interferometry. Astrophys. J. 718, 963 (2010)ADSCrossRefGoogle Scholar
  119. 119.
    Labbé, I., et al.: Star formation rates and stellar masses of z \(=\) 7–8 galaxies from IRAC observations of the WFC3/IR early release science and the HUDF fields. Astrophys. J. 716, L103 (2010)ADSCrossRefGoogle Scholar
  120. 120.
    Laing, R.A., Riley, J.M., Longair, M.S.: Bright radio sources at 178 MHz—flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. Mon. Not. R. Astron. Soc. 204, 151 (1983)ADSGoogle Scholar
  121. 121.
    Landecker, T.L., Wielebinski, R.: The Galactic Metre Wave radiation: a two-frequency survey between declinations +25° and -25° and the preparation of a map of the whole sky. Aust. J. Phys., Astrophys. Suppl. 16, 1 (1970)ADSGoogle Scholar
  122. 122.
    Laureijs, R., et al.: Euclid definition study report. ArXiv:1110.3193 (2011)
  123. 123.
    Lee, K.: Constraining extended reionization models through arcminute-scale CMB measurements. ArXiv:0902.1530 (2009)
  124. 124.
    Lidz, A., Furlanetto, S.R., Oh, S.P., Aguirre, J., Chang, T.-C., Doré, O., Pritchard, J.R.: Intensity mapping with carbon monoxide emission lines and the redshifted 21 cm line. Astrophys. J. 741, 70 (2011)ADSCrossRefGoogle Scholar
  125. 125.
    Lidz, A., Zahn, O., Furlanetto, S.R., McQuinn, M., Hernquist, L., Zaldarriaga, M.: Probing reionization with the 21 cm galaxy cross-power spectrum. Astrophys. J. 690, 252 (2009)ADSCrossRefGoogle Scholar
  126. 126.
    Lidz, A., Zahn, O., McQuinn, M., Zaldarriaga, M., Hernquist, L.: Detecting the rise and fall of 21 cm fluctuations with the Murchison Widefield array. Astrophys. J. 680, 962 (2008)ADSCrossRefGoogle Scholar
  127. 127.
    Loeb, A.: The race between stars and quasars in reionizing cosmic hydrogen. J. Cosmol. Astropart. Phys. 3, 22 (2009)ADSCrossRefGoogle Scholar
  128. 128.
    Loeb, A., Zaldarriaga, M.: Measuring the small-scale power spectrum of cosmic density fluctuations through 21 cm tomography prior to the epoch of structure formation. Phys. Rev. Lett. 92, 211301 (2004)ADSCrossRefGoogle Scholar
  129. 129.
    Lorenzoni, S., Bunker, A.J., Wilkins, S.M., Jarvis, M.J., Caruana, J.: Star-forming galaxies at z ≈ 8–9 from Hubble space telescope/WFC3: implications for reionization. Mon. Not. R. Astron. Soc. 414, 1455 (2011)ADSCrossRefGoogle Scholar
  130. 130.
    Mack, K.J., Wesley, D.H.: Primordial black holes in the Dark Ages: observational prospects for future 21 cm surveys. ArXiv:0805.1531 (2008)
  131. 131.
    Mack, K.J., Wyithe, J.S.B.: Detecting the redshifted 21 cm forest during reionization. Mon. Not. R. Astron. Soc. 425, 2988 (2012)ADSCrossRefGoogle Scholar
  132. 132.
    Madau, P., Silk, J.: Population III and the near-infrared background excess. Mon. Not. R. Astron. Soc. 359, L37 (2005)ADSCrossRefGoogle Scholar
  133. 133.
    Madau, P., Meiksin, A., Rees, M.J.: 21 centimeter tomography of the intergalactic medium at high redshift. Astrophys. J. 475, 429 (1997)ADSCrossRefGoogle Scholar
  134. 134.
    Maio, U., Koopmans, L.V.E., Ciardi, B.: The impact of primordial supersonic flows on early structure formation, reionization and the lowest-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 412, L40 (2011)ADSCrossRefGoogle Scholar
  135. 135.
    Majumdar, S., Bharadwaj, S., Datta, K.K., Choudhury, T.R.: The impact of anisotropy from finite light traveltime on detecting ionized bubbles in redshifted 21-cm maps. Mon. Not. R. Astron. Soc. 413, 1409 (2011)ADSCrossRefGoogle Scholar
  136. 136.
    Majumdar, S., Bharadwaj, S., Choudhury, T.R.: Constrainingquasar and intergalactic medium properties through bubble detection in redshifted 21-cm maps. Mon. Not. R. Astron. Soc. 426, 3178 (2012)ADSCrossRefGoogle Scholar
  137. 137.
    Mao, X.-C.: Subtracting foregrounds from interferometric measurements of the redshifted 21 cm emission. Astrophys. J. 744, 29 (2012)ADSCrossRefGoogle Scholar
  138. 138.
    Mao, Y., Tegmark, M., McQuinn, M., Zaldarriaga, M., Zahn, O.: How accurately can 21 cm tomography constrain cosmology?Phys. Rev. D 78, 023529 (2008)ADSCrossRefGoogle Scholar
  139. 139.
    Mao, Y., Shapiro, P.R., Mellema, G., Iliev, I.T., Koda, J., Ahn, K.: Redshift-space distortion of the 21-cm background from the epoch of reionization—I. Methodology re-examined. Mon. Not. R. Astron. Soc. 422, 926 (2012)ADSCrossRefGoogle Scholar
  140. 140.
    Mapelli, M., Ferrara, A., Pierpaoli, E.: Impact of dark matter decays and annihilations on reionization. Mon. Not. R. Astron. Soc. 369, 1719 (2006)ADSCrossRefGoogle Scholar
  141. 141.
    Matejek, M.S., Morales, M.F.: Correcting for the ionosphere in the uv-plane. ArXiv:0911.3942 (2009)
  142. 142.
    Mather, J.C., et al.: A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) satellite. Astrophys. J. 354, L37 (1990)ADSCrossRefGoogle Scholar
  143. 143.
    Matsumoto, T., et al.: Near infrared extragalactic background. In: Lemke, D., Stickel, M., Wilke, K. (eds.) Lecture Notes in Physics. ISO Survey of a Dusty Universe, vol. 548, p 96. Springer, Berlin (2000)CrossRefGoogle Scholar
  144. 144.
    Matsumoto, T., et al.: AKARI observation of the fluctuation of the near-infrared background. Astrophys. J. 742, 124 (2011)ADSCrossRefGoogle Scholar
  145. 145.
    McKinley, B., et al.: Low-frequency observations of the moon with the Murchison Widefield array. Astron. J. 145, 23 (2013)ADSCrossRefGoogle Scholar
  146. 146.
    McQuinn, M., O’Leary, R.M.: The impact of the supersonic Baryon-Dark matter velocity difference on the z ∼ 20 21 cm background. Astrophys. J. 760, 3 (2012)ADSCrossRefGoogle Scholar
  147. 147.
    McQuinn, M., Furlanetto, S.R., Hernquist, L., Zahn, O., Zaldarriaga, M.: The kinetic Sunyaev-Zel’dovich effect from reionization. Astrophys. J. 630, 643 (2005)ADSCrossRefGoogle Scholar
  148. 148.
    McQuinn, M., Zahn, O., Zaldarriaga, M., Hernquist, L., Furlanetto, S.R.: Cosmological parameter estimation using 21 cm radiation from the epoch of reionization. Astrophys. J. 653, 815 (2006)ADSCrossRefGoogle Scholar
  149. 149.
    McQuinn, M., Hernquist, L., Zaldarriaga, M., Dutta, S.: Studying reionization with Ly\(\alpha \) emitters. Mon. Not. R. Astron. Soc. 381, 75 (2007)ADSCrossRefGoogle Scholar
  150. 150.
    McQuinn, M., Lidz, A., Zahn, O., Dutta, S., Hernquist, L., Zaldarriaga, M.: The morphology of HII regions during reionization. Mon. Not. R. Astron. Soc. 377, 1043 (2007)ADSCrossRefGoogle Scholar
  151. 151.
    Meiksin, A.: The micro-structure of the intergalactic medium—I. The 21 cm signature from dynamical minihaloes. Mon. Not. R. Astron. Soc. 417, 1480 (2011)ADSCrossRefGoogle Scholar
  152. 152.
    Mellema, G., Iliev, I.T., Pen, U.-L., Shapiro, P.R.: Simulating cosmic reionization at large scales—II. The 21-cm emission features and statistical signals. Mon. Not. R. Astron. Soc. 372, 679 (2006)ADSCrossRefGoogle Scholar
  153. 153.
    Mesinger, A.: Was reionization complete by z ∼ 5–6?Mon. Not. R. Astron. Soc. 407, 1328 (2010)ADSCrossRefGoogle Scholar
  154. 154.
    Mesinger, A., Furlanetto, S., Cen, R.: 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal. Mon. Not. R. Astron. Soc. 411, 955 (2011)ADSCrossRefGoogle Scholar
  155. 155.
    Mesinger, A., McQuinn, M., Spergel, D.N.: The kinetic Sunyaev-Zel’dovich signal from inhomogeneous reionization: a parameter space study. Mon. Not. R. Astron. Soc. 422, 1403 (2012)ADSCrossRefGoogle Scholar
  156. 156.
    Morales, M.F., Hewitt, J.: Toward epoch of reionization measurements with wide-field radio observations. Astrophys. J. 615, 7 (2004)ADSCrossRefGoogle Scholar
  157. 157.
    Mortlock, D.J., et al.: A luminous quasar at a redshift of z = 7.085. Nature 474, 616 (2011)ADSCrossRefGoogle Scholar
  158. 158.
    Nusser, A.: The Alcock-Paczyński test in redshifted 21-cm maps. Mon. Not. R. Astron. Soc. 364, 743 (2005)ADSCrossRefGoogle Scholar
  159. 159.
    Oesch, P.A., et al.: Probing the dawn of galaxies at z∼9–12: new constraints from HUDF12/XDF and CANDELS data. ArXiv:1301.6162 (2013)
  160. 160.
    Offringa, A.R.: Algorithms for radio interference detection and removal. PhD thesis, Kapteyn Astronomical Institute, University of Groningen (2012)Google Scholar
  161. 161.
    Offringa, A.R., de Bruyn A.G., Biehl, M., Zaroubi, S., Bernardi, G., Pandey, V.N.: Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc. 405, 155 (2010)ADSGoogle Scholar
  162. 162.
    Offringa, A.R., et al.: The LOFAR radio environment. Astron. Astrophys. 549, A11 (2013)ADSCrossRefGoogle Scholar
  163. 163.
    Ord, S.M., et al.: Interferometric imaging with the 32 element Murchison wide-field array. Publ. Astron. Soc. Pac. 122, 1353 (2010)ADSCrossRefGoogle Scholar
  164. 164.
    Ostriker, J.P., Vishniac, E.T.: Generation of microwave background fluctuations from nonlinear perturbations at the ERA of galaxy formation. Astrophys. J. 306, L51 (1986)ADSCrossRefGoogle Scholar
  165. 165.
    Ouchi, M., et al.: Statistics of 207 Ly\(\alpha \) emitters at a redshift near 7: constraints on reionization and galaxy formation models. Astrophys. J. 723, 869 (2010)ADSCrossRefGoogle Scholar
  166. 166.
    Paciga, G., et al.: The GMRT epoch of reionization experiment: a new upper limit on the neutral hydrogen power spectrum at z ≈ 8.6. Mon. Not. R. Astron. Soc. 413, 1174 (2011)ADSCrossRefGoogle Scholar
  167. 167.
    Paciga, G., et al.: A refined foreground-corrected limit on the HI power spectrum at z=8.6 from the GMRT epoch of reionization experiment. ArXiv:1301.5906 (2013)
  168. 168.
    Padmanabhan, N., Finkbeiner, D.P.: Detecting dark matter annihilation with CMB polarization: signatures and experimental prospects. Phys. Rev. D 72, 023508 (2005)ADSCrossRefGoogle Scholar
  169. 169.
    Pan, T., Barkana, R.: Measuring the history of cosmic reionization using the 21-cm difference PDF. ArXiv:1209.5751 (2012)
  170. 170.
    Pandolfi, S., et al.: Impact of general reionization scenarios on extraction of inflationary parameters. Phys. Rev. D 82, 123527 (2010)ADSCrossRefGoogle Scholar
  171. 171.
    Parsons, A.R., Backer, D.C.: Calibration of low-frequency, wide-field radio interferometers using delay/delay-rate filtering. Astron. J. 138, 219 (2009)ADSCrossRefGoogle Scholar
  172. 172.
    Parsons, A.R., et al.: The precision array for probing the epoch of re-ionization: eight station results. Astron. J. 139, 1468 (2010)ADSCrossRefGoogle Scholar
  173. 173.
    Parsons, A., Pober, J., McQuinn, M., Jacobs, D., Aguirre, J.: A sensitivity and array-configuration study for measuring the power spectrum of 21 cm emission from reionization. Astrophys. J. 753, 81 (2012)ADSCrossRefGoogle Scholar
  174. 174.
    Parsons, A.R., Pober, J.C., Aguirre, J.E., Carilli, C.L., Jacobs, D.C., Moore, D.F.: A per-baseline, delay-spectrum technique for accessing the 21 cm cosmic reionization signature. Astrophys. J. 756, 165 (2012)ADSCrossRefGoogle Scholar
  175. 175.
    Pearson, R.: Scrub data with scale-invariant nonlinear digital filters. EDN. (2002)
  176. 176.
    Pen, U.-L., Chang, T.-C., Hirata, C.M., Peterson, J.B., Roy, J., Gupta, Y., Odegova, J., Sigurdson, K.: The GMRT EoR experiment: limits on polarized sky brightness at 150 MHz. Mon. Not. R. Astron. Soc. 399, 181 (2009)ADSCrossRefGoogle Scholar
  177. 177.
    Petrovic, N., Oh, S.P.: Systematic effects of foreground removal in 21-cm surveys of reionization. Mon. Not. R. Astron. Soc. 413, 2103 (2011)ADSCrossRefGoogle Scholar
  178. 178.
    Pindor, B., Wyithe, J.S.B., Mitchell, D.A., Ord, S.M., Wayth, R.B., Greenhill, L.J.: Subtraction of bright point sources from synthesis images of the epoch of reionization. Publ. Astron. Soc. Aust. 28, 46 (2011)ADSCrossRefGoogle Scholar
  179. 179.
    Pober, J.C., et al.: Opening the 21 cm EoR window: measurements of foreground isolation with PAPER. ArXiv:1301.7099 (2013)
  180. 180.
    Prasad, J., Chengalur, J.: FLAGCAL: a flagging and calibration package for radio interferometric data. Exp. Astron. 33, 157 (2012)ADSCrossRefGoogle Scholar
  181. 181.
    Prasad, P., Wijnholds, S.J.: AARTFAAC: towards a 24\(\times \)7, all-sky monitor for LOFAR. ArXiv:1205.3056 (2012)
  182. 182.
    Pritchard, J.R., Furlanetto, S.R.: 21-cm fluctuations from inhomogeneous X-ray heating before reionization. Mon. Not. R. Astron. Soc. 376, 1680 (2007)ADSCrossRefGoogle Scholar
  183. 183.
    Pritchard, J.R., Loeb, A.: Evolution of the 21 cm signal throughout cosmic history. Phys. Rev. D 78, 103511 (2008)ADSCrossRefGoogle Scholar
  184. 184.
    Pritchard, J.R., Loeb, A.: Constraining the unexplored period between the dark ages and reionization with observations of the global 21 cm signal. Phys. Rev. D 82, 023006 (2010)ADSCrossRefGoogle Scholar
  185. 185.
    Pritchard, J.R., Loeb, A.: 21 cm cosmology in the 21st century. Rep. Prog. Phys. 75, 086901 (2012)ADSCrossRefGoogle Scholar
  186. 186.
    Ratcliffe, J.A.: Some aspects of diffraction theory and their application to the ionosphere. Rep. Prog. Phys. 19, 188 (1956)ADSCrossRefGoogle Scholar
  187. 187.
    Ricotti, M., Ostriker, J.P., Mack, K.J.: Effect of primordial black holes on the cosmic microwave background and cosmological parameter estimates. Astrophys. J. 680, 829 (2008)ADSCrossRefGoogle Scholar
  188. 188.
    Rogers, A.E.E., Bowman, J.D.: Spectral index of the diffuse radio background measured from 100 to 200 MHz. Astron. J. 136, 641 (2008)ADSCrossRefGoogle Scholar
  189. 189.
    Roy, J., Gupta, Y., Pen, U.-L., Peterson, J.B., Kudale, S., Kodilkar, J.: A real-time software backend for the GMRT. Exp. Astron. 28, 25 (2010)ADSCrossRefGoogle Scholar
  190. 190.
    Salvaterra, R., Ferrara, A.: The imprint of the cosmic dark ages on the near-infrared background. Mon. Not. R. Astron. Soc. 339, 973 (2003)ADSCrossRefGoogle Scholar
  191. 191.
    Salvaterra, R., Ferrara, A.Mon. Not. R. Astron. Soc. 367, L11 (2006)ADSCrossRefGoogle Scholar
  192. 192.
    Salvaterra, R., Ciardi, B., Ferrara, A., Baccigalupi, C.: Reionization history from coupled cosmic microwave background/21-cm line data. Mon. Not. R. Astron. Soc. 360, 1063 (2005)ADSCrossRefGoogle Scholar
  193. 193.
    Santos, M.G., Cooray, A.: Cosmological and astrophysical parameter measurements with 21-cm anisotropies during the era of reionization. Phys. Rev. D 74, 083517 (2006)ADSCrossRefGoogle Scholar
  194. 194.
    Santos, M.R., Bromm, V., Kamionkowski, M.: The contribution of the first stars to the cosmic infrared background. Mon. Not. R. Astron. Soc. 336, 1082 (2002)ADSCrossRefGoogle Scholar
  195. 195.
    Santos, M.G., Cooray, A., Haiman, Z., Knox, L., Ma, C.-P.: Small-scale cosmic microwave background temperature and polarization anisotropies due to patchy reionization. Astrophys. J. 598, 756 (2003)ADSCrossRefGoogle Scholar
  196. 196.
    Santos, M.G., Cooray, A., Knox, L.: Multifrequency analysis of 21 centimeter fluctuations from the era of reionization. Astrophys. J. 625, 575 (2005)ADSCrossRefGoogle Scholar
  197. 197.
    Santos, M.G., Amblard, A., Pritchard, J., Trac, H., Cen, R., Cooray, A.: Cosmic reionization and the 21 cm signal: comparison between an analytical model and a simulation. Astrophys. J. 689, 1 (2008)ADSCrossRefGoogle Scholar
  198. 198.
    Santos, M.G., Ferramacho, L., Silva, M.B., Amblard, A., Cooray, A.: Fast large volume simulations of the 21-cm signal from the reionization and pre-reionization epochs. Mon. Not. R. Astron. Soc. 406, 2421 (2010)ADSCrossRefGoogle Scholar
  199. 199.
    Santos, M.G., Silva, M.B., Pritchard, J.R., Cen, R., Cooray, A.: Probing the first galaxies with the square kilometer array. Astron. Astrophys. 527, A93 (2011)ADSCrossRefGoogle Scholar
  200. 200.
    Schaffer, K.K., et al.: The first public release of south pole telescope data: maps of a 95 deg2 Field from 2008 observations. Astrophys. J. 743, 90 (2011)ADSCrossRefGoogle Scholar
  201. 201.
    Schmidt, M., Schneider, D.P., Gunn, J.E.: Spectrscopic CCD surveys for quasars at large redshift. IV. Evolution of the luminosity function from quasars detected by their Lyman-alpha emission. Astron. J. 110, 68 (1995)ADSCrossRefGoogle Scholar
  202. 202.
    Semelin, B., Combes, F., Baek, S.: Lyman-alpha radiative transfer during the epoch of reionization: contribution to 21-cm signal fluctuations. Astron. Astrophys. 474, 365 (2007)ADSCrossRefGoogle Scholar
  203. 203.
    Shapiro, P.R., Iliev, I.T., Alvarez, M.A., Scannapieco, E.: Relativistic ionization fronts. Astrophys. J. 648, 922 (2006)ADSCrossRefGoogle Scholar
  204. 204.
    Shapiro, P.R., et al.: Simulating cosmic reionization and the radiation backgrounds from the epoch of reionization. In: Umemura, M., Omukai, K. (eds.) American Institute of Physics Conference Series, vol. 1480, pp 248–260 (2012)Google Scholar
  205. 205.
    Shapiro, P.R., Mao, Y., Iliev, I.T., Mellema, G., Datta, K.K., Ahn, K., Koda, J.: Will nonlinear peculiar velocity and inhomogeneous reionization spoil 21 cm cosmology from the epoch of reionization? ArXiv:1211.2036 (2012)
  206. 206.
    Shaver, P.A., Windhorst, R.A., Madau, P., de Bruyn, A.G.: Can the reionization epoch be detected as a global signature in the cosmic background?Astron. Astrophys. 345, 380 (1999)ADSGoogle Scholar
  207. 207.
    Shirokoff, E., et al.: Improved constraints on cosmic microwave background secondary anisotropies from the complete 2008 south pole telescope data. Astrophys. J. 736, 61 (2011)ADSCrossRefGoogle Scholar
  208. 208.
    Slosar, A., Cooray, A., Silk, J.I.: Cross-correlation studies as a probe of reionization physics. Mon. Not. R. Astron. Soc. 377, 168 (2007)ADSCrossRefGoogle Scholar
  209. 209.
    Sun, X.H., Reich, W.: Simulated square kilometre array maps from Galactic 3D-emission models. Astron. Astrophys. 507, 1087 (2009)ADSCrossRefGoogle Scholar
  210. 210.
    Sun, X.H., Reich, W., Waelkens, A., Enßlin, T.A.: Radio observational constraints on Galactic 3D-emission models. Astron. Astrophys. 477, 573 (2008)ADSCrossRefGoogle Scholar
  211. 211.
    Sunyaev, R.A., Zeldovich, Y.B.: Small-scale fluctuations of relic radiation. Astrophys. Space Sci. 7, 3 (1970)ADSGoogle Scholar
  212. 212.
    Tashiro, H., Aghanim, N., Langer, M., Douspis, M., Zaroubi, S.: The cross-correlation of the CMB polarization and the 21-cm line fluctuations from cosmic reionization. Mon. Not. R. Astron. Soc. 389, 469 (2008)ADSCrossRefGoogle Scholar
  213. 213.
    Tashiro, H., Aghanim, N., Langer, M., Douspis, M., Zaroubi, S., Jelić, V.: Second order cross-correlation between kinetic Sunyaev-Zel’dovich effect and 21-cm fluctuations from the epoch of reionization. Mon. Not. R. Astron. Soc. 414, 3424 (2011)ADSCrossRefGoogle Scholar
  214. 214.
    Theuns, T., Schaye, J., Zaroubi, S., Kim, T., Tzanavaris, P., Carswell, B.: Constraints on reionization from the thermal history of the intergalactic medium. Astrophys. J. 567, L103 (2002)ADSCrossRefGoogle Scholar
  215. 215.
    Thomas, R.M., et al.: Fast large-scale reionization simulations. Mon. Not. R. Astron. Soc. 393, 32 (2009)ADSCrossRefGoogle Scholar
  216. 216.
    Thompson, A.R., Moran, J.M., Swenson, Jr. G.W.: Interferometry and Synthesis in Radio Astronomy, 2nd edn.Wiley, New York (2001)CrossRefGoogle Scholar
  217. 217.
    Thompson, R.I., Eisenstein, D., Fan, X., Rieke, M., Kennicutt, R.C.: Constraints on the cosmic near-infrared background excess from NICMOS deep field observations. Astrophys. J. 657, 669 (2007)ADSCrossRefGoogle Scholar
  218. 218.
    Tingay, S.J., et al.: The Murchison Widefield array: the square kilometre array precursor at low radio frequencies. Publ. Astron. Soc. Aust. 30, 7 (2013)ADSCrossRefGoogle Scholar
  219. 219.
    Toma, K., Sakamoto, T., Mészáros, P.: Population III gamma-ray burst afterglows: constraints on stellar masses and external medium densities. Astrophys. J. 731, 127 (2011)ADSCrossRefGoogle Scholar
  220. 220.
    Tozzi, P., Madau, P., Meiksin, A., Rees, M.J.: Radio signatures of H I at high redshift: mapping the end of the “Dark Ages”. Astrophys. J. 528, 597 (2000)ADSCrossRefGoogle Scholar
  221. 221.
    Trac, H.Y., Gnedin, N.Y.: Computer simulations of cosmic reionization. Adv. Sci. Lett. Q11 4, 228 (2011)CrossRefGoogle Scholar
  222. 222.
    Trott, C.M., Wayth, R.B., Tingay, S.J.: The impact of point-source subtraction residuals on 21 cm epoch of reionization estimation. Astrophys. J. 757, 101 (2012)ADSCrossRefGoogle Scholar
  223. 223.
    Tseliakhovich, D., Hirata, C.: Relative velocity of dark matter and baryonic fluids and the formation of the first structures. Phys. Rev. D 82, 083520 (2010)ADSCrossRefGoogle Scholar
  224. 224.
    van Weeren, R.J., et al.: First LOFAR observations at very low frequencies of cluster-scale non-thermal emission: the case of Abell 2256. Astron. Astrophys. 543, A43 (2012)ADSCrossRefGoogle Scholar
  225. 225.
    Visbal, E., Loeb, A.: Measuring the 3D clustering of undetected galaxies through cross correlation of their cumulative flux fluctuations from multiple spectral lines. J. Cosmol. Astropart. Phys. 11, 16 (2010)ADSCrossRefGoogle Scholar
  226. 226.
    Visbal, E., Barkana, R., Fialkov, A., Tseliakhovich, D., Hirata, C.: The signature of the first stars in atomic hydrogen at redshift 20. Nature 487, 70 (2012)ADSGoogle Scholar
  227. 227.
    Vishniac, E.T.: Reionization and small-scale fluctuations in the microwave background. Astrophys. J. 322, 597 (1987)ADSCrossRefGoogle Scholar
  228. 228.
    Volonteri, M., Gnedin, N.Y.: Relative role of stars and quasars in cosmic reionization. Astrophys. J. 703, 2113 (2009)ADSCrossRefGoogle Scholar
  229. 229.
    Vonlanthen, P., Semelin, B., Baek, S., Revaz, Y.: Distinctive rings in the 21 cm signal of the epoch of reionization. Astron. Astrophys. 532, A97 (2011)ADSCrossRefGoogle Scholar
  230. 230.
    Waelkens, A., Jaffe, T., Reinecke, M., Kitaura, F.S., Enßlin, T.A.: Simulating polarized Galactic synchrotron emission at all frequencies. The Hammurabi code. Astron. Astrophys. 495, 697 (2009)ADSCrossRefGoogle Scholar
  231. 231.
    Wang, X., Tegmark, M., Santos, M.G., Knox, L.: 21 cm tomography with foregrounds. Astrophys. J. 650, 529 (2006)ADSCrossRefGoogle Scholar
  232. 232.
    Wiersma, R.P.C., et al.: LOFAR insights into the epoch of reionization from the cross power spectrum of 21 cm emission and galaxies. ArXiv:1209.5727 (2012)
  233. 233.
    Williams, C.L., et al.: Low-frequency imaging of fields at high galactic latitude with the Murchison Widefield array 32 element prototype. Astrophys. J. 755, 47 (2012)ADSCrossRefGoogle Scholar
  234. 234.
    Willott, C.J., et al.: The Canada-France high-z quasar survey: nine new quasars and the luminosity function at redshift 6. Astron. J. 139, 906 (2010)ADSCrossRefGoogle Scholar
  235. 235.
    Wilman, R.J., et al.: A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. Mon. Not. R. Astron. Soc. 388, 1335 (2008)ADSGoogle Scholar
  236. 236.
    Wright, E.L., Reese, E.D.: Detection of the cosmic infrared background at 2.2 and 3.5 microns using DIRBE observations. Astrophys. J. 545, 43 (2000)ADSCrossRefGoogle Scholar
  237. 237.
    Wyithe, J.S.B., Loeb, A., Barnes, D.G.: Prospects for redshifted 21 cm observations of quasar H II regions. Astrophys. J. 634, 715 (2005)ADSCrossRefGoogle Scholar
  238. 238.
    Xu, Y., Chen, X., Fan, Z., Trac, H., Cen, R.: The 21 cm forest as a probe of the reionization and the temperature of the intergalactic medium. Astrophys. J. 704, 1396 (2009)ADSCrossRefGoogle Scholar
  239. 239.
    Xu, Y., Ferrara, A., Chen, X.: The earliest galaxies seen in 21 cm line absorption. Mon. Not. R. Astron. Soc. 410, 2025 (2011)ADSGoogle Scholar
  240. 240.
    Yatawatta, S.: Fundamental limitations of pixel based image deconvolution in radio astronomy. ArXiv:1008.1892 (2010)
  241. 241.
    Yatawatta, S.: Radio astronomical image deconvolution using prolate spheroidal wave functions. ArXiv:1101.2830 (2011)
  242. 242.
    Yatawatta, S., Zaroubi, S., de Bruyn, G., Koopmans, L., Noordam, J.: Radio interferometric calibration using the SAGE algorithm. ArXiv:0810.5751 (2008)
  243. 243.
    Yatawatta, S., et al.: Initial deep LOFAR observations of epoch of reionization windows. I. The north celestial pole. Astron. Astrophys. A136, 550 (2013)Google Scholar
  244. 244.
    Yu, Q.: The apparent shape of the Strömgren sphere around the highest redshift QSOs with Gunn–Peterson troughs. Astrophys. J. 623, 683 (2005)ADSCrossRefGoogle Scholar
  245. 245.
    Yue, B., Ferrara, A., Salvaterra, R., Chen, X.: The contribution of high-redshift galaxies to the near-infrared background. Mont. Not. R. Astron. Soc. 431, 383 (2013)Google Scholar
  246. 246.
    Zahn, O., Zaldarriaga, M., Hernquist, L., McQuinn, M.: The influence of nonuniform reionization on the CMB. Astrophys. J. 630, 657 (2005)ADSCrossRefGoogle Scholar
  247. 247.
    Zahn, O., Lidz, A., McQuinn, M., Dutta, S., Hernquist, L., Zaldarriaga, M., Furlanetto, S.R.: Simulations and analytic calculations of bubble growth during hydrogen reionization. Astrophys. J. 654, 12 (2007)ADSCrossRefGoogle Scholar
  248. 248.
    Zahn, O., et al.: Cosmic microwave background constraints on the duration and timing of reionization from the South Pole telescope. Astrophys. J. 756, 65 (2012)ADSCrossRefGoogle Scholar
  249. 249.
    Zaldarriaga, M., Furlanetto, S.R., Hernquist, L.: 21 centimeter fluctuations from cosmic gas at high redshifts. Astrophys. J. 608, 622 (2004)ADSCrossRefGoogle Scholar
  250. 250.
    Zaroubi, S., Thomas, R.M., Sugiyama, N., Silk, J.: Heating of the intergalactic medium by primordial miniquasars. Mon. Not. R. Astron. Soc. 375, 1269 (2007)ADSCrossRefGoogle Scholar
  251. 251.
    Zaroubi, S., et al.: Imaging neutral hydrogen on large scales during the epoch of reionization with LOFAR. Mon. Not. R. Astron. Soc. 425, 2964 (2012)ADSCrossRefGoogle Scholar
  252. 252.
    Zeldovich, Y.B., Sunyaev, R.A.: The interaction of matter and radiation in a hot-model universe. Astrophys. Space Sci. 4, 301 (1969)ADSCrossRefGoogle Scholar
  253. 253.
    Zhang, P., Pen, U.-L., Trac, H.: Precision era of the kinetic Sunyaev-Zel’dovich effect: simulations, analytical models and observations and the power to constrain reionization. Mon. Not. R. Astron. Soc. 347, 1224 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Garrelt Mellema
    • 1
    Email author
  • Léon V. E. Koopmans
    • 2
  • Filipe A. Abdalla
    • 3
  • Gianni Bernardi
    • 4
  • Benedetta Ciardi
    • 5
  • Soobash Daiboo
    • 2
  • A. G. de Bruyn
    • 2
  • Kanan K. Datta
    • 1
  • Heino Falcke
    • 7
  • Andrea Ferrara
    • 8
  • Ilian T. Iliev
    • 9
  • Fabio Iocco
    • 10
  • Vibor Jelić
    • 6
  • Hannes Jensen
    • 1
  • Ronniy Joseph
    • 2
  • Panos Labroupoulos
    • 6
  • Avery Meiksin
    • 11
  • Andrei Mesinger
    • 8
  • André R. Offringa
    • 2
  • V. N. Pandey
    • 6
  • Jonathan R. Pritchard
    • 12
  • Mario G. Santos
    • 13
  • Dominik J. Schwarz
    • 14
  • Benoit Semelin
    • 15
  • Harish Vedantham
    • 2
  • Sarod Yatawatta
    • 6
  • Saleem Zaroubi
    • 2
  1. 1.Department of Astronomy & Oskar Klein CenterStockholm UniversityStockholmSweden
  2. 2.Kapteyn Astronomical InstituteUniversity of GroningenGroningenThe Netherlands
  3. 3.Department of Physics and AstronomyUniversity College LondonLondonUK
  4. 4.Center for AstrophysicsHarvard UniversityCambridgeUSA
  5. 5.Max Plank Institute for AstrophysicsGarchingGermany
  6. 6.ASTRONDwingelooThe Netherlands
  7. 7.Department of AstronomyRadboud UniversityNijmegenNetherlands
  8. 8.Scuola Normale SuperiorePisaItaly
  9. 9.Department of Physics and AstronomySussex UniversitySussexUK
  10. 10.Department of Physics and Oskar Klein CenterStockholm UniversityStockholmSweden
  11. 11.Institute for AstronomyUniversity of EdinburghEdinburghUK
  12. 12.Department of PhysicsImperial CollegeLondonUK
  13. 13.CENTRA, Instituto Superior TecnicoTechnical University of LisbonLisbonPortugal
  14. 14.Faculty of PhysicsBielefeld UniversityBielefeldGermany
  15. 15.Observatoire de ParisParisFrance

Personalised recommendations