Experimental Astronomy

, Volume 35, Issue 3, pp 527–559 | Cite as

Integral wide-field spectroscopy in astronomy: the Imaging FTS solution

  • J. P. Maillard
  • L. Drissen
  • F. Grandmont
  • S. Thibault
Original Article

Abstract

Long-slit grating spectrometers in scanning mode and Fabry–Perot interferometers as tunable filters are commonly used to perform integral wide-field spectroscopy on extended astrophysical objects as HII regions and nearby galaxies. The goal of this paper is to demonstrate, by comparison, through a thorough review of the imaging Fourier transform spectrometer (IFTS) properties, that this instrument represents another interesting solution. After a brief recall of the performances, regarding FOV and spectral resolution, of the grating spectrometer, without and with integral field units (IFU), and of the imaging Fabry–Perot, it is demonstrated that for an IFTS the product of the maximum resolution R by the entrance beam étendue U is equal to \(2.6\,N\times S_I\) with \(N\,\times \,N\) the number of pixels of the detector array and S\(_I\) the area of the interferometer beamsplitter. As a consequence, the IFTS offers the most flexible choice of field size and spectral resolution, up to high values for both parameters. It also presents on a wide field an important multichannel advantage in comparison to integral field grating spectrometers, even with multiple IFUs. To complete, the few astronomical IFTSs, built behind ground-based telescopes and in space, for the visible range up to the sub-millimetric domain, are presented. Through two wide-field IFTS projects, one in the visible, the other one in the mid-infrared, the question is addressed of the practical FOV and resolution limits, set by the optical design of the instrument, which can be achieved. Within the 0.3 to \(\sim \)2.5 \(\upmu\)m domain, a Michelson interferometer with wide-field diopric collimators provides the easiest solution. This design is illustrated by a \(11^{\prime}\times 11^{\prime}\)-field IFTS in the 0.35–0.90 \(\upmu\)m range around an off-axis interferometer, called SITELLE, proposed for the 3.6-m CFH Telescope. At longer wavelengths, an all-mirror optics is required, as studied for a spaceborne IFTS, H2EX, for the 8–29 \(\upmu\)m range, a \(20^{\prime} \times 20^{\prime}\) field, and a high resolution of \(\simeq 3\times 10^4\) at 10 \(\upmu\)m. To comply with these characteristics, the interferometer is designed with cat’s eye retroreflectors. In the same domain and up to the far infrared, if the instrument aims only at a low spectral resolution (few thousands) and a smaller field (few arcmins\(^2\)), roof-top or corner cube mirrors, as for the IFTS SPIRE on the Herschel space telescope, are usable. At last, perspectives are opened, behind an ELT in the visible and the near infrared with the SITELLE optical combination, in the 2–5 \(\upmu\)m on the Antarctic plateau or in space up to longer wavelengths, with the H2EX design, to provide the missing capability of global high spectral resolution studies of extended sources, from comets to distant galaxy clusters.

Keywords

Instrumentation Spectroscopy Star formation Gas kinematics ISM 

References

  1. 1.
    Allington-Smith, J.: Basic principles of integral field spectroscopy. New Astron. Rev. 50, 244 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Bacon, R., Adam, G., Baranne, A., et al.: 3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER. Astron. Astrophys. Suppl. 113, 347 (1995)ADSGoogle Scholar
  3. 3.
    Bacon, R., Copin, Y., Monnet, G., et al.: The SAURON project—I. The panoramic integral-field spectrograph. Mon. Not. R. Astron. Soc. 326, 23 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Bacon, R., Accardo, M., Adjali, L., et al.: The MUSE second-generation VLT instrument. Proc. SPIE 7735, 8 (2010)Google Scholar
  5. 5.
    Bagnasco, G., Ferruit, P., et al.: The on-ground calibration of the Near Infrared Spectrograph (NIRSpec) instrument on-board the James Webb Space Telescope (JWST). Proc. SPIE 7010, 35 (2008)Google Scholar
  6. 6.
    Barr, J.M., Baker, J.C., et al.: Tunable-filter imaging of quasar fields at z ~1. II. The star-forming galaxy environments of radio-loud quasars. Astrophys. J. 128, 2660 (2004)Google Scholar
  7. 7.
    Blais-Ouellette, S., Daigle, O., Taylor, K.: The imaging Bragg tunable filter: a new path to integral field spectroscopy and narrow band imaging. Proc. SPIE 6269, 5H (2006)Google Scholar
  8. 8.
    Bennett, C.L.: Critical comparison of 3-D imaging approaches. In: van Breugel, W., Bland-Hawthorn, J. (eds.) Imaging the Universe in Three Dimensions, ASP Conf. Series 195, p. 58 (2000)Google Scholar
  9. 9.
    Bernier, A.P., Charlebois, M., Drissen, L., Grandmont, F.: Technical improvements and performances of SpIOMM: an Imaging Fourier transform spectrometer for astronomy. Proc. SPIE 7014, 7J (2008)Google Scholar
  10. 10.
    Boulanger, F., Maillard, J.P., Appleton, P., et al.: The molecular hydrogen explorer H2EX. Exp. Astron. 23, 277 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    Charlebois, M., Drissen, L., Bernier, A.P., et al.: A hyperspectral view of the Crab Nebula. Astron. J. 139, 2083 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Chemin, L., Balkowski, C., Cayatte, V., et al.: A Virgo high-resolution Hα kinematical survey—II. The Atlas. Mon. Not. R. Astron. Soc. 366, 812 (2006)ADSGoogle Scholar
  13. 13.
    Cepa, J., Aguiar-Gonzalez, M., Bland-Hawthorn, J., et al.: OSIRIS tunable imager and spectrograph for the GTC. Instrument status. Proc. SPIE 4841, 1739 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Cox, P., Huggins, P.J., Maillard, J.P., et al.: High resolution near-infrared spectro-imaging of NGC 7027. Astron. Astrophys. 384, 616 (2002)CrossRefGoogle Scholar
  15. 15.
    Davis, S.P., Abrams, M.C., Brault, J.W.: Fourier Transform Spectrometry. Academic Press, San Diego, California (2001)Google Scholar
  16. 16.
    Doyon, R., Hutchings, J., Rowlands, N., et al.: The JWST Tunable Filter Imager (TFI). Proc. SPIE 7731, 0F (2010)Google Scholar
  17. 17.
    Drissen, L., Bernier, A.P., Charlebois, M., et al.: Science results from the imaging Fourier transform spectrometer SpIOMM. Proc. SPIE 7014, 7K (2008)Google Scholar
  18. 18.
    Drissen, L., Bernier, A.P., Rousseau-Nepton, L., et al.: SITELLE: a wide-field imaging Fourier transform spectrometer for the Canada-France-Hawaii Telescope. Proc. SPIE 7735, 0B (2010)Google Scholar
  19. 19.
    Formisano, V., Angrilli, F., Arnold, G., et al.: The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission. Planet. Space Sci. 53, 963 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    Gom, B., Naylor, D.: Testing results and current status of FTS-2, an imaging Fourier transform spectrometer for SCUBA-2. Proc. SPIE 7741, 2E (2010)Google Scholar
  21. 21.
    Graham, J.R., Abrams, M., Bennett, C., et al.: The performance and scientific rationale for an infrared Imaging Fourier Transform Spectrograph on a large space telescope. Publ. Astron. Soc. Pacific 110, 1205 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Graham, J.R.: IFIRS: an Imaging Fourier Transform Spectrometer for the next generation space telescope. In: Smith, E., Long, K. (eds.) Next Generation Space Telescope Science and Technology, ASP Conf. Series 207, p. 240 (2000)Google Scholar
  23. 23.
    Hill, G.J., Adams, J.J., Blanc, G., et al.: VIRUS: a massively replicated 33k fiber integral field spectrograph for the upgraded Hobby–Eberly Telescope. Proc. SPIE 7735, 0L (2010)Google Scholar
  24. 24.
    Kaiser, N., Burgett, W., Chambers, K., et al.: The Pan-STARRS wide-field optical/NIR imaging survey. Proc. SPIE 7733, 12 (2010)ADSGoogle Scholar
  25. 25.
    Kawada, M., Takahashi, H., Murakami, N., et al.: Performance of an Imaging Fourier Transform Spectrometer with photoconductive detector arrays: an application for the AKARI far-infrared instrument. Publ. Astron. Soc. Japan 60, 389 (2008)ADSGoogle Scholar
  26. 26.
    Kissler-Patig, M., Walsh, J.R., Roth, M.M.: Science perspectives for 3D spectroscopy. In: ESO Astrophysics Symposia. Springer (2007)Google Scholar
  27. 27.
    Kunde, V.G., Ade, P., Barney, R.D., et al.: Cassini infrared Fourier spectroscopic investigation. Proc. SPIE 2803, 162 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    Lagrois, D., Joncas, G., Drissen, L.: Diagnostic line ratios in the IC 1805 optical gas complex. Mon. Not. R. Astron. Soc. 420, 2280 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Larkin, J., Barczys, M., Krabbe, A., et al.: OSIRIS: a diffraction limited integral field spectrograph for Keck. Proc. SPIE 6269, 1A (2006)Google Scholar
  30. 30.
    Laurent, F., Renault, E., Kosmalski, J., et al.: MUSE image slicer: test results on largest slicer ever manufactured. Proc. SPIE 7018, 15 (2008)ADSGoogle Scholar
  31. 31.
    Maillard, J.P., Michel, G.: A high resolution Fourier transform spectrometer for the Cassegrain focus at the CFH telescope. In: Humphries, C.M. (ed.) Instrumentation for Astronomy with Large Optical Telescopes, Astro. & Sp. Sc. Lib. 92, p. 213. Reidel (1982)Google Scholar
  32. 32.
    Maillard, J.P.: 3D-Spectroscopy with a Fourier Transform Spectrometer. In: Comte, G., Marcelin, M. (eds.) Tridimensional Optical Spectroscopic Methods in Astrophysics, ASP Conf. Series 71, p. 316 (1995)Google Scholar
  33. 33.
    Maillard, J.P.: Recent results in astronomical Fourier transform spectroscopy. Spectrochim. Acta 51A, 1105 (1995)ADSGoogle Scholar
  34. 34.
    Maillard, J.P.: BEAR Imaging FTS: high resolution spectroscopy in infrared emission lines. In: van Breugel, W., Bland-Hawthorn, J. (eds.) Imaging the Universe in Three Dimensions, ASP Conf. Series 195, p. 185 (2000)Google Scholar
  35. 35.
    Maillard, J.P.: Integral field spectroscopy at high spectral resolution with an Imaging FTS. In: Käufl, H.U., Siebenmorgen, R., Moorwood, A.F.M. (eds.) High Resolution Infrared Spectroscopy in Astronomy, ESO Astrophysics Symposia, p. 528. Springer (2005)Google Scholar
  36. 36.
    Maillard, J.P., Boulanger, F.: 3D-Exploration of the Universe by a wide-field Imaging FTS at high spectral resolution. In: Zinnecker, H., Epchtein, N., Rauer, H. (eds.) Large Astronomical Infrastructures at Concordia, Prospects and Constraints, 2nd Arena Conference, EAS Pub. Series 33, p. 123 (2008)Google Scholar
  37. 37.
    Maillard, J.P., Boulanger, F., Longval, Y., et al.: A wide-field Imaging FTS for the Molecular Hydrogen Explorer space mission (H2EX). Proc. SPIE 7010, 26 (2008)Google Scholar
  38. 38.
    Marcelin, M., Amram, P., Balard, P., et al.: 3D-NTT: a versatile integral field spectro-imager for the NTT. Proc. SPIE 7014, 55 (2008)Google Scholar
  39. 39.
    Martayan, C., Baade, D., Fabregat, J.: A slitless spectroscopic survey for Hα emission-line objects in SMC clusters. Astron. Astrophys. 509, A11 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Mengel, S., Eisenhauer, F., et al.: New era of spectroscopy: SINFONI NIR integral field spectroscopy at the diffraction limit of an 8-m telescope. Proc. SPIE 4005, 301 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    Morris, S.L., Ouellette, J., Villemaire, A., et al.: A Canadian IFTS for the NGST. In: Smith, E., Long, K. (eds.) Next Generation Space Telescope Science and Technology, ASP Conf. Series 207, p. 276 (2000)Google Scholar
  42. 42.
    Naylor, D.A., Gom, B.G., Zhang, B.: Preliminary design of FTS-2: an imaging Fourier transform spectrometer for SCUBA-2. Proc. SPIE 6275, 1Z (2006)Google Scholar
  43. 43.
    Naylor, D.A., Baluteau, J.P., Barlow, M., et al.: In-orbit performance of the Herschel/SPIRE Imaging Fourier Transform Spectrometer. Proc. SPIE 7731, 29 (2010)ADSGoogle Scholar
  44. 44.
    Naylor, D.A., Dartois, E., Habart, E., et al.: First detection of the methylidyne cation (CH+) fundamental rotational line with the Herschel/SPIRE FTS. Astron. Astrophys. 518, L117 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Noël, B., Joblin, C., Maillard, J.P., Paumard, T.: New results on the massive star-forming region S106 by BEAR spectro-imagery. Astron. Astrophys. 436, 569 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    Oberst, T.E., Parshley, S.C., Nikola, T., et al.: A 205 μm [NII] map of the Carina Nebula. Astrophys. J. 739, 100 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Okada, Y., Kawada, M., Murakami, N., et al.: Properties of active galactic star-forming regions probed by imaging spectroscopy with the Fourier transform spectrometer (FTS) onboard AKARI. Astron. Astrophys. 514, 13 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Pasquini, L., Avila, G., Blecha, A., et al.: Installation and commissioning of FLAMES, the VLT Multifibre Facility. Messenger 110, 1 (2002)ADSGoogle Scholar
  49. 49.
    Paumard, T., Maillard, J.P., Morris, M.: Kinematic and structural analysis of the Minispiral in the Galactic Center from BEAR spectro-imagery. Astron. Astrophys. 426, 81 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    Pazder, J.S., Roberts, S., et al.: The optical design of the wide field optical spectrograph for the Thirty Meter Telescope. Proc. SPIE 6269, 63 (2006)ADSGoogle Scholar
  51. 51.
    Pepe, F.: FP7 ESO E-ELT Preparatory—WP 6000, Network 3, Statement of Work (2010)Google Scholar
  52. 52.
    Posselt, W., Maillard, J.P., Wright, G.: NIRCAM-IFTS: Imaging Fourier Transform Spectrometer for NGST. In: Smith, E., Long, K. (eds.) Next Generation Space Telescope Science and Technology, ASP Conf. Series 207, p. 303 (2000)Google Scholar
  53. 53.
    Reed, J.E., Hester, J.J., Fabian, A.C., Winkler, P.F.: The Three-dimensional structure of the Cassiopeia A supernova remnant. I. The spherical shell. Astrophys. J. 440, 706 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    Rousseau-Nepton, L., Robert, C., Drissen, L.: HII Regions of NGC 628 and M101 as seen with SpIOMM. In: Tracing the Ancestry of Galaxies (on the land of our ancestors), IAU Symp., vol. 277, p. 112 (2011)Google Scholar
  55. 55.
    Saito, R.K., Hempel, M., Minniti, D., et al.: VVV DR1: the first data release of the Milky Way bulge and southern plane from the near-infrared ESO public survey VISTA variables in the Via Lactea. Astron. Astrophys. 537, 107 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    Schlegel, D.J., Ghiorso, B.: LBNL fiber positioners for wide-field spectroscopy. Proc. SPIE 7018, 701850 (2008)CrossRefGoogle Scholar
  57. 57.
    Smith, J.D.T., Rudnick, L., Delaney, T., et al.: Spitzer spectral mapping of supernova remnant Cassiopeia A. Astrophys. J. 693, 713 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    Swinyard, B., Nakagawa, T., et al.: The space infrared telescope for cosmology and astrophysics: SPICA A joint mission between JAXA and ESA. Exp. Astron. 23, 193 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    Taylor, K., Mendes de, O.liveira., C., Laporte, R., et al.: The Brazilian tunable filter imager for SOAR. Proc. SPIE 7739, 4U (2010)Google Scholar
  60. 60.
    Thatte, N., Tecza, M., Clarke, F., et al.: HARMONI: a single-field wide-band integral-field spectrograph for the European ELT. Proc. SPIE 7735, 85 (2010)ADSGoogle Scholar
  61. 61.
    Veilleux, S., Weiner, B.J., Rupke, D.S.N., et al.: MMTF: The Maryland-Magellan Tunable Filter. Astron. J. 139, 145 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    Williams, C.S.: Mirror misalignment in Fourier spectroscopy using a Michelson interferometer with circular aperture. Appl. Opt. 5, 1084 (1966)ADSCrossRefGoogle Scholar
  63. 63.
    Wishnow, E.H., Wurtz, R.E., Blais-Ouellette, S., et al.: Visible Imaging Fourier Transform Spectrometer: design and calibration. Proc. SPIE 4841, 1067 (2003)ADSCrossRefGoogle Scholar
  64. 64.
    Wright, E.L., Eisenhardt, P.R.M., et al.: The Wide-field Infrared Survey Explorer (WISE): mission description and initial on-orbit performance. Astron. J. 140, 1868 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    Wright, G.S., Reike, G., Boeker, T., et al.: Progress with the design and development of MIRI, the mid-IR instrument for JWST. Proc. SPIE 7731, 0E (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • J. P. Maillard
    • 1
  • L. Drissen
    • 2
  • F. Grandmont
    • 3
  • S. Thibault
    • 4
  1. 1.Institut d’Astrophysique de Paris, UMR7095 CNRSUniversite Pierre & Marie CurieParisFrance
  2. 2.Département de Physique, de Génie physique et d’Optique, Centre de Recherche en Astrophysique du QuébecUniversité LavalQuébecCanada
  3. 3.ABB BomemQuébecCanada
  4. 4.Département de Physique, Génie physique et Optique, Pavillon d’optique-photoniqueUniversité LavalQuébecCanada

Personalised recommendations