Experimental Astronomy

, Volume 34, Issue 2, pp 203–242 | Cite as

OSS (Outer Solar System): a fundamental and planetary physics mission to Neptune, Triton and the Kuiper Belt

  • B. Christophe
  • L. J. Spilker
  • J. D. Anderson
  • N. André
  • S. W. Asmar
  • J. Aurnou
  • D. Banfield
  • A. Barucci
  • O. Bertolami
  • R. Bingham
  • P. Brown
  • B. Cecconi
  • J. -M. Courty
  • H. Dittus
  • L. N. Fletcher
  • B. Foulon
  • F. Francisco
  • P. J. S. Gil
  • K. H. Glassmeier
  • W. Grundy
  • C. Hansen
  • J. Helbert
  • R. Helled
  • H. Hussmann
  • B. Lamine
  • C. Lämmerzahl
  • L. Lamy
  • R. Lehoucq
  • B. Lenoir
  • A. Levy
  • G. Orton
  • J. Páramos
  • J. Poncy
  • F. Postberg
  • S. V. Progrebenko
  • K. R. Reh
  • S. Reynaud
  • C. Robert
  • E. Samain
  • J. Saur
  • K. M. Sayanagi
  • N. Schmitz
  • H. Selig
  • F. Sohl
  • T. R. Spilker
  • R. Srama
  • K. Stephan
  • P. Touboul
  • P. Wolf
Original Article


The present OSS (Outer Solar System) mission continues a long and bright tradition by associating the communities of fundamental physics and planetary sciences in a single mission with ambitious goals in both domains. OSS is an M-class mission to explore the Neptune system almost half a century after the flyby of the Voyager 2 spacecraft. Several discoveries were made by Voyager 2, including the Great Dark Spot (which has now disappeared) and Triton’s geysers. Voyager 2 revealed the dynamics of Neptune’s atmosphere and found four rings and evidence of ring arcs above Neptune. Benefiting from a greatly improved instrumentation, a mission as OSS would result in a striking advance in the study of the farthest planet of the solar system. Furthermore, OSS would provide a unique opportunity to visit a selected Kuiper Belt object subsequent to the passage of the Neptunian system. OSS would help consolidate the hypothesis of the origin of Triton as a Kuiper Belt object captured by Neptune, and to improve our knowledge on the formation of the solar system. The OSS probe would carry instruments allowing precise tracking of the spacecraft during the cruise. It would facilitate the best possible tests of the laws of gravity in deep space. These objectives are important for fundamental physics, as they test General Relativity, our current theoretical description of gravitation, but also for cosmology, astrophysics and planetary science, as General Relativity is used as a tool in all these domains. In particular, the models of solar system formation uses General Relativity to describe the crucial role of gravity. OSS is proposed as an international cooperation between ESA and NASA, giving the capability for ESA to launch an M-class mission towards the farthest planet of the solar system, and to a Kuiper Belt object. The proposed mission profile would allow to deliver a 500 kg class spacecraft. The design of the probe is mainly constrained by the deep space gravity test in order to minimize the perturbation of the accelerometer measurement.


Fundamental physics Deep space gravity Neptune Triton Kuiper Belt object 



The authors thanks the reviewers for their comments and corrections.

We gratefully acknowledge the support of the Argo Science team for supplying their Decadal Survey White Papers [60, 61, 127, 130].

This proposal was supported by CNES (France) through a phase 0 study managed by E. Hinglais.


  1. 1.
    Abernathy, M.R., Tegler, S.C., Grundy, W.M., Licandro, J., Romanishin, W., Cornelison, D., Vilas, F.: Digging into the surface of the icy dwarf planet Eris. Icarus 199, 520–525 (2009). doi: 10.1016/j.icarus.2008.10.016, arXiv:0811.0825 ADSCrossRefGoogle Scholar
  2. 2.
    Acuña, M.H.: Space-based magnetometers. Rev. Sci. Instrum. 73, 3717–3736 (2002). doi: 10.1063/1.1510570 ADSCrossRefGoogle Scholar
  3. 3.
    Adelberger, E.G., Heckel, B.R., Nelson, A.E.: Tests of the gravitational inverse-square law. Annu. Rev. Nucl. Part. Sci. 53, 77–121 (2003). doi: 10.1146/annurev.nucl.53.041002.110503, arXiv:hep-ph/0307284 ADSCrossRefGoogle Scholar
  4. 4.
    Aguirre, A., Burgess, C.P., Friedland, A., Nolte, D.: Astrophysical constraints on modifying gravity at large distances. Classical Quant. Grav. 18, 223 (2001). doi: 10.1088/0264-9381/18/23/202, arXiv:hep-ph/0105083 ADSCrossRefGoogle Scholar
  5. 5.
    Anderson, J., Nieto, M.: Astrometric solar-system anomalies. Proc. Int. Astron. Union 5(Symposium S261), 189–197 (2009). doi: 10.1017/S1743921309990378, CrossRefGoogle Scholar
  6. 6.
    Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81(14), 2858–2861 (1998). doi: 10.1103/PhysRevLett.81.2858 ADSCrossRefGoogle Scholar
  7. 7.
    Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S.G.: Study of the anomalous acceleration of Pioneer 10 and 11. Phys. Rev. D 65(8), 082004 (2002). doi: 10.1103/PhysRevD.65.082004 ADSCrossRefGoogle Scholar
  8. 8.
    Asmar, S.W., Armstrong, J.W., Iess, L., Tortora, P.: Spacecraft Doppler tracking: noise budget and accuracy achievable in precision radio science observations. Rad. Sci. 40, RS2001 (2005). doi: 10.1029/2004RS003101 ADSCrossRefGoogle Scholar
  9. 9.
    Aurnou, J., Heimpel, M., Wicht, J.: The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190, 110–126 (2007). doi: 10.1016/j.icarus.2007.02.024 ADSCrossRefGoogle Scholar
  10. 10.
    Auster, H.U., Glassmeier, K.H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K.H., Georgescu, E., Harvey, P., Hillenmaier, O., Kroth, R., Ludlam, M., Narita, Y., Nakamura, R., Okrafka, K., Plaschke, F., Richter, I., Schwarzl, H., Stoll, B., Valavanoglou, A., Wiedemann, M.: The THEMIS fluxgate magnetometer. Space Sci. Rev. 141, 235–264 (2008). doi: 10.1007/s11214-008-9365-9 ADSCrossRefGoogle Scholar
  11. 11.
    Bagenal, F.: Giant planet magnetospheres. Annu. Rev. Earth Planet. Sci. 20, 289–328 (1992). doi: 10.1146/annurev.ea.20.050192.001445 ADSCrossRefGoogle Scholar
  12. 12.
    Balogh, A.: Planetary magnetic field measurements: missions and instrumentation. Space Sci. Rev. 152, 23–97 (2010). doi: 10.1007/s11214-010-9643-1 ADSCrossRefGoogle Scholar
  13. 13.
    Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A.: The Solar System beyond Neptune: overview and perspectives. In: Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A., Dotson., R. (eds.) The Solar System Beyond Neptune, pp. 3–10 (2008)Google Scholar
  14. 14.
    Barucci, M.A., Brown, M.E., Emery, J.P., Merlin, F.: Composition and surface properties of transneptunian objects and centaurs. In: Barucci, M.A., Boehnhardt., H., Cruikshank., D.P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 143–160 (2008)Google Scholar
  15. 15.
    Bertaux, J.L., Fonteyn, D., Korablev, O., Chassefière, E., Dimarellis, E., Dubois, J.P., Hauchecorne, A., Cabane, M., Rannou, P., Levasseur-Regourd, A.C., Cernogora, G., Quemerais, E., Hermans, C., Kockarts, G., Lippens, C., Maziere, M.D., Moreau, D., Muller, C., Neefs, B., Simon, P.C., Forget, F., Hourdin, F., Talagrand, O., Moroz, V.I., Rodin, A., Sandel, B., Stern, A.: The study of the martian atmosphere from top to bottom with SPICAM light on Mars Express. Planet. Space Sci. 48, 1303–1320 (2000). doi: 10.1016/S0032-0633(00)00111-2 ADSCrossRefGoogle Scholar
  16. 16.
    Bertaux, J.L., Nevejans, D., Korablev, O., Villard, E., Quémerais, E., Neefs, E., Montmessin, F., Leblanc, F., Dubois, J.P., Dimarellis, E., Hauchecorne, A., Lefèvre, F., Rannou, P., Chaufray, J.Y., Cabane, M., Cernogora, G., Souchon, G., Semelin, F., Reberac, A., van Ransbeek, E., Berkenbosch, S., Clairquin, R., Muller, C., Forget, F., Hourdin, F., Talagrand, O., Rodin, A., Fedorova, A., Stepanov, A., Vinogradov, I., Kiselev, A., Kalinnikov, Y., Durry, G., Sandel, B., Stern, A., Gérard, J.C.: SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 1673–1700 (2007). doi: 10.1016/j.pss.2007.01.016 ADSCrossRefGoogle Scholar
  17. 17.
    Bertolami, O., Páramos, J.: The Pioneer anomaly in the context of the braneworld scenario. Classical Quant. Grav. 21, 3309–3321 (2004). doi: 10.1088/0264-9381/21/13/013, arXiv:gr-qc/0310101 ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    Bertolami, O., Böhmer, C.G., Harko, T., Lobo, F.S.N.: Extra force in f(r) modified theories of gravity. Phys. Rev. D 75(10), 104016 (2007). doi: 10.1103/PhysRevD.75.104016 MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Bertolami, O., Francisco, F., Gil, P.J.S., Páramos, J.: Thermal analysis of the pioneer anomaly: A method to estimate radiative momentum transfer. Phys. Rev. D 78(10), 103001 (2008). doi: 10.1103/PhysRevD.78.103001 ADSCrossRefGoogle Scholar
  20. 20.
    Bertotti, B., Iess, L., Tortora, P.: A. test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374–376 (2003). doi: 10.1038/nature01997 ADSCrossRefGoogle Scholar
  21. 21.
    Blanc, M., Moura, D., Alibert, Y., et al.: Tracing the origins of the Solar System. In: Favata, F., Sanz-Forcada, J., Giménez, A., Battrick, B. (eds.) 39th ESLAB Symposium on Trends in Space Science and Cosmic Vision 2020, ESA Special Publication, vol. 588, p. 213 (2005)Google Scholar
  22. 22.
    Bougeret, J.L., Goetz, K., Kaiser, M.L., Bale, S.D., Kellogg, P.J., Maksimovic, M., Monge, N., Monson, S.J., Astier, P.L., Davy, S., Dekkali, M., Hinze, J.J., Manning, R.E., Aguilar-Rodriguez, E., Bonnin, X., Briand, C., Cairns, I.H., Cattell, C.A., Cecconi, B., Eastwood, J., Ergun, R.E., Fainberg, J., Hoang, S., Huttunen, K.E.J., Krucker, S., Lecacheux, A., MacDowall, R.J., Macher, W., Mangeney, A., Meetre, C.A., Moussas, X., Nguyen, Q.N., Oswald, T.H., Pulupa, M., Reiner, M.J., Robinson, P.A., Rucker, H., Salem, C., Santolik, O., Silvis, J.M., Ullrich, R., Zarka, P., Zouganelis, I.: S/WAVES: the radio and plasma wave investigation on the STEREO mission. Space Sci. Rev. 136, 487–528 (2008). doi: 10.1007/s11214-007-9298-8 ADSCrossRefGoogle Scholar
  23. 23.
    Brownstein, J.R., Moffat, J.W.: Gravitational solution to the Pioneer 10/11 anomaly. Classical Quant. Grav. 23, 3427–3436 (2006). doi: 10.1088/0264-9381/23/10/013, arXiv:gr-qc/0511026 ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Brucker, M.J., Grundy, W.M., Stansberry, J.A., Spencer, J.R., Sheppard, S.S., Chiang, E.I., Buie, M.W.: High albedos of low inclination Classical Kuiper belt objects. Icarus 201, 284–294 (2009). doi: 10.1016/j.icarus.2008.12.040, arXiv:0812.4290 ADSCrossRefGoogle Scholar
  25. 25.
    Bruneton, J.P., Esposito-Farèse, G.: Field-theoretical formulations of mond-like gravity. Phys. Rev. D 76(12), 124012 (2007). doi: 10.1103/PhysRevD.76.124012 ADSCrossRefGoogle Scholar
  26. 26.
    Burns, J.A., Cuzzi, J.N.: Our local astrophysical laboratory. Science 312(5781), 1753–1755 (2006)CrossRefGoogle Scholar
  27. 27.
    Carr, C., Brown, P., Zhang, T.L., Gloag, J., Horbury, T., Lucek, E., Magnes, W., O’Brien, H., Oddy, T., Auster, U., Austin, P., Aydogar, O., Balogh, A., Baumjohann, W., Beek, T., Eichelberger, H., Fornacon, K., Georgescu, E., Glassmeier, K., Ludlam, M., Nakamura, R., Richter, I.: The Double Star magnetic field investigation: instrument design, performance and highlights of the first year’s observations. Ann. Geophys. 23, 2713–2732 (2005). doi: 10.5194/angeo-23-2713-2005 ADSCrossRefGoogle Scholar
  28. 28.
    Chan, J., Wood, J.G., Schreiber, J.G.: Development of advanced stirling radioisotope generator for space exploration. In: El-Genik, M.S. (ed.) Space Technology and Applications International Forum-STAIF 2007, American Institute of Physics Conference Series, vol. 880, pp. 615–623 (2007). doi: 10.1063/1.2437500
  29. 29.
    Christophe, B., Andersen, P.H., Anderson, J.D., Asmar, S., Bério, P., Bertolami, O., Bingham, R., Bondu, F., Bouyer, P., Bremer, S., Courty, J., Dittus, H., Foulon, B., Gil, P., Johann, U., Jordan, J.F., Kent, B., Lämmerzahl, C., Lévy, A., Métris, G., Olsen, O., Pàramos, J., Prestage, J.D., Progrebenko, S.V., Rasel, E., Rathke, A., Reynaud, S., Rievers, B., Samain, E., Sumner, T.J., Theil, S., Touboul, P., Turyshev, S., Vrancken, P., Wolf, P., Yu, N.: Odyssey: a solar system mission. Exp. Astron. 23, 529–547 (2009). doi: 10.1007/s10686-008-9084-y, arXiv:0711.2007 [gr-qc] ADSCrossRefGoogle Scholar
  30. 30.
    Connerney , J.E.P., Acuna, M.H., Ness, N.F.: The magnetic field of Neptune. J. Geophys. Res. 96, 19023 (1991)ADSGoogle Scholar
  31. 31.
    Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1935 (2006). doi: 10.1142/S021827180600942X, arXiv:hep-th/0603057 MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Croft, S.K., Kargel, J.S., Kirk, R.L., Moore, J.M., Schenk, P.M., Strom, R.G.: The geology of Triton. In: Cruikshank, D.P., Matthews, M.S., Schumann, A.M. (eds.) Neptune and Triton, pp. 879–947 (1995)Google Scholar
  33. 33.
    Damour, T., Piazza, F., Veneziano, G.: Runaway dilaton and equivalence principle violations. Phys. Rev. Lett. 89(8), 081601 (2002). doi: 10.1103/PhysRevLett.89.081601, arXiv:gr-qc/0204094 ADSCrossRefGoogle Scholar
  34. 34.
    Defise, J.M., Berghmans, D., Hochedez, J.F.E., Lecat, J.H.M., Mazy, E., Rochus, P.L., Thibert, T., Nicolosi, P., Pelizzo, M.G., Schuehle, U.H., Van der Linden, R.A.M., Zhukov, A.N.: SWAP: Sun watcher using APS detector on-board PROBA-2, a new EUV off-axis telescope on a technology demonstration platform. In: Fineschi, S., Gummin, M.A. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5171, pp. 143–154 (2004). doi: 10.1117/12.516510
  35. 35.
    Del Genio, A.D., Barbara, J.M., Ferrier, J., Ingersoll, A.P., West, R.A., Vasavada, A.R., Spitale, J., Porco, C.C.: Saturn eddy momentum fluxes and convection: first estimates from Cassini images. Icarus 189, 479–492 (2007). doi: 10.1016/j.icarus.2007.02.013 ADSCrossRefGoogle Scholar
  36. 36.
    Dermott, S.F.: Shapes and gravitational moments of satellites and asteroids. Icarus 37, 575–586 (1979). doi: 10.1016/0019-1035(79)90015-0 ADSCrossRefGoogle Scholar
  37. 37.
    Dittus, H., Turyshev, S., Lämmerzahl, C., Theil, S., Förstner, R., Johann, U., Ertmer, W., Rasel, E., Dachwald, B., Seboldt, W., Hehl, F., Kiefer, C., Blome, H.J., Kunz, J., Giulini, D., Bingham, R., Kent, B., Sumner, T., Bertolami, O., Páramos, J., Christophe, B., Foulon, B., Touboul, P., Bouyer, P., Reynaud, S., Brillet, A., Bondu, F., Samain, E., de Matos, C., Erd, C., Grenouilleau, J., Izzo, D., Rathke, A., Anderson, J., Asmar, S., Lau, E., Nieto, M., Mashoon, B.: A Mission to Explore the Pioneer Anomaly. ESA Special Publications 588, 3–10 (2005). arXiv:gr-qc/0506139 ADSGoogle Scholar
  38. 38.
    Djerroud, K., Acef, O., Clairon, A., Lemonde, P., Man, C.N., Samain, E., Wolf, P.: Coherent optical link through the turbulent atmosphere. Opt. Lett. 35, 1479–1481 (2010) doi: 10.1364/OL.35.001479, arXiv:0911.4506 [physics.optics] ADSCrossRefGoogle Scholar
  39. 39.
    Doressoundiram, A., Boehnhardt, H., Tegler, S.C., Trujillo, C.: Color properties and trends of the transneptunian objects. In: Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 91–104 (2008)Google Scholar
  40. 40.
    Earman, J., Janssen, M.: Einstein’s explanation of the motion of Mercury’s perihelion. In: Earman, J., Janssen, M., Norton, J.D. (eds.) The Attraction of Gravitation: New Studies in the History of General Relativity, p. 129 (1993)Google Scholar
  41. 41.
    Esnault, F.X., Rossetto, N., Holleville, D., Delporte, J., Dimarcq, N.: HORACE: a compact cold atom clock for Galileo. Adv. Space Res. 47, 854–858 (2011). doi: 10.1016/j.asr.2010.12.012 ADSCrossRefGoogle Scholar
  42. 42.
    Fienga, A., Laskar, J., Kuchynka, P., Le Poncin-Lafitte, C., Manche, H., Gastineau, M.: Gravity tests with INPOP planetary ephemerides. In: Klioner, S.A., Seidelmann, P.K., Soffel, M.H. (eds.) IAU Symposium, vol. 261, pp. 159–169 (2010). doi: 10.1017/S1743921309990330, arXiv:0906.3962
  43. 43.
    Fortney, J.J., Ikoma, M., Nettelmann, N., Guillot, T., Marley, M.S.: Self-consistent model atmospheres and the cooling of the Solar System’s giant planets. Astrophys. J. 729(32), 1–14 (2011). doi: 10.1088/0004-637X/729/1/32, arXiv:1101.0606[astro-ph.EP] Google Scholar
  44. 44.
    Foryta, D.W., Sicardy, B.: The dynamics of the Neptunian ADAMS Ring’s arcs. Icarus 123, 129–167 (1996). doi: 10.1006/icar.1996.0146 ADSCrossRefGoogle Scholar
  45. 45.
    Francisco, F., Bertolami, O., Gil, P.J.S., Páramos, J.: Modelling the reflective thermal contribution to the acceleration of the pioneer spacecraft. Phys. Lett. B. 711(5), 337–346 (2012).. doi: 10.1016/j.physletb.2012.04.034 Google Scholar
  46. 46.
    Fridelance, P., Samain, E., Veillet, C.: T2L2—Time Transfer by Laser Link: a new optical time transfer generation. Exp. Astron. 7, 191–207 (1997). doi: 10.1023/A:1007982512087 ADSCrossRefGoogle Scholar
  47. 47.
    Frieman, J.A., Turner, M.S., Huterer, D.: Dark energy and the accelerating universe. Annu. Rev. Astron. Astrophys. 46, 385–432 (2008). doi: 10.1146/annurev.astro.46.060407.145243, arXiv:0803.0982 ADSCrossRefGoogle Scholar
  48. 48.
    Georgescu, E., Auster, H.U., Takada, T., Gloag, J., Eichelberger, H., Fornaçon, K.-H., Brown, P., Carr, C.M., Zhang, T.L.: Modified gradiometer technique applied to Double Star (TC-1). Adv. Space Res. 411579–1584 (2008). doi: 10.1016/j.asr.2008.01.014 ADSCrossRefGoogle Scholar
  49. 49.
    Glassmeier, K., Richter, I., Diedrich, A., Musmann, G., Auster, U., Motschmann, U., Balogh, A., Carr, C., Cupido, E., Coates, A., Rother, M., Schwingenschuh, K., Szegö, K., Tsurutani, B.: RPC-MAG the fluxgate magnetometer in the ROSETTA plasma consortium. Space Sci. Rev. 128, 649–670 (2007). doi: 10.1007/s11214-006-9114-x ADSCrossRefGoogle Scholar
  50. 50.
    Glassmeier, K.H., Auster, H.U., Heyner, D., Okrafka, K., Carr, C., Berghofer, G., Anderson, B.J., Balogh, A., Baumjohann, W., Cargill, P., Christensen, U., Delva, M., Dougherty, M., Fornaçon, K.H., Horbury, T.S., Lucek, E.A., Magnes, W., Mandea, M., Matsuoka, A., Matsushima, M., Motschmann, U., Nakamura, R., Narita, Y., O’Brien, H., Richter, I., Schwingenschuh, K., Shibuya, H., Slavin, J.A., Sotin, C., Stoll, B., Tsunakawa, H., Vennerstrom, S., Vogt, J., Zhang, T.: The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter. Planet. Space Sci. 58, 287–299 (2010). doi: 10.1016/j.pss.2008.06.018 ADSCrossRefGoogle Scholar
  51. 51.
    Gloag, J.M., Lucek, E.A., Alconcel, L.N., Balogh, A., Brown, P., Carr, C.M., Dunford, C.N., Oddy, T., Soucek, J.: FGM data products in the CAA. In: Laakso, H., Taylor, M., Escoubet, C.P. (eds.) The Cluster Active Archive, Studying the Earth’s Space Plasma Environment, pp. 109–128 (2010). doi: 10.1007/978-90-481-3499-1_7
  52. 52.
    Goldreich, P., Tremaine, S., Borderies, N.: Towards a theory for Neptune’s arc rings. Astron. J. 92, 490–494 (1986). doi: 10.1086/114178 ADSCrossRefGoogle Scholar
  53. 53.
    Gregory, M., Heine, F., Kämpfner, H., Meyer, R., Fields, R., Lunde, C.: TESAT laser communication terminal performance results in 5.6 GBit coherent inter-satellite and satelliteto-ground links. In: Proc Int Conf on Space Optics, session 8a (2010)Google Scholar
  54. 54.
    Grün, E., Fechtig, H., Hanner, M.S., Kissel, J., Lindblad, B.A., Linkert, D., Maas, D., Morfill, G.E., Zook, H.A.: The Galileo Dust Detector. Space Sci. Rev. 60, 317–340 (1992). doi: 10.1007/BF00216860 ADSCrossRefGoogle Scholar
  55. 55.
    Grün, E., Fechtig, H., Kissel, J., Linkert, D., Maas, D., McDonnell, J.A.M., Morfill, G.E., Schwehm, G., Zook, H.A., Giese, R.H.: The ULYSSES dust experiment. Astron. Astrophys. Suppl. Ser. 92, 411–423 (1992)ADSGoogle Scholar
  56. 56.
    Grundy, W.M., Young, L.A., Stansberry, J.A., Buie, M.W., Olkin, C.B., Young, E.F.: Near-infrared spectral monitoring of Triton with IRTF/SpeX II: spatial distribution and evolution of ices. Icarus 205, 594–604 (2010). doi: 10.1016/j.icarus.2009.08.005, arXiv:0908.2623[astro-ph.EP] ADSCrossRefGoogle Scholar
  57. 57.
    Guo, Y., Farquhar, R.W.: New horizons mission design. Space Sci. Rev. 140, 49–74 (2008). doi: 10.1007/s11214-007-9242-y ADSCrossRefGoogle Scholar
  58. 58.
    Gurnett, D.A., Kurth, W.S., Granroth, L.J., Allendorf, S.C., Poynter, R.L.: Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument. J. Geophys. Res. 96, 19177 (1991)ADSCrossRefGoogle Scholar
  59. 59.
    Gurnett, D.A., Kurth, W.S., Kirchner, D.L., Hospodarsky, G.B., Averkamp, T.F., Zarka, P., Lecacheux, A., Manning, R., Roux, A., Canu, P., Cornilleau-Wehrlin, N., Galopeau, P., Meyer, A., Boström, R., Gustafsson, G., Wahlund, J.E., Åhlen, L., Rucker, H.O., Ladreiter, H.P., Macher, W., Woolliscroft, L.J.C., Alleyne, H., Kaiser, M.L., Desch, M.D., Farrell, W.M., Harvey, C.C., Louarn, P., Kellogg, P.J., Goetz, K., Pedersen, A: The Cassini Radio and plasma wave investigation. Space Sci. Rev. 114, 395–463 (2004). doi: 10.1007/s11214-004-1434-0 ADSCrossRefGoogle Scholar
  60. 60.
    Hansen, C., Argo Team: Neptune science with Argo—a voyage through the Outer Solar System. Decadal Survey white paper (2010)Google Scholar
  61. 61.
    Hansen, C., Argo Team: Triton science with Argo—a voyage through the Outer Solar System. Decadal Survey white paper (2010)Google Scholar
  62. 62.
    Harrington, J., Hansen, B.M., Luszcz, S.H., Seager, S., Deming, D., Menou, K., Cho, J., Richardson, L.J.: The phase-dependent infrared brightness of the extrasolar planet Υ Andromedae b. Science 314, 623–626 (2006). doi: 10.1126/science.1133904, arXiv:astro-ph/0610491 ADSCrossRefGoogle Scholar
  63. 63.
    Helled, R., Anderson, J.D., Schubert, G.: Uranus and Neptune: shape and rotation. Icarus 210, 446–454 (2010). doi: 10.1016/j.icarus.2010.06.037, arXiv:1006.3840[astro-ph.EP] ADSCrossRefGoogle Scholar
  64. 64.
    Hiesinger, H., Helbert, J., MERTIS Co-I Team: The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission. Planet. Space Sci. 58, 144–165 (2010). doi: 10.1016/j.pss.2008.09.019 ADSCrossRefGoogle Scholar
  65. 65.
    Hopkinson, G.R., Mohammadzadeh, A.: Low temperature alpha particle irradiation of a STAR1000 CMOS APS. IEEE Trans. Nucl. Sci. 55, 2229–2234 (2008). doi: 10.1109/TNS.2008.920257 ADSCrossRefGoogle Scholar
  66. 66.
    Hubbard, W.B.: NOTE: gravitational signature of Jupiter’s deep zonal flows. Icarus 137, 357–359 (1999). doi: 10.1006/icar.1998.6064 ADSCrossRefGoogle Scholar
  67. 67.
    Hubbard, W.B., Anderson, J.D.: Possible flyby measurements of Galilean satellite interior structure. Icarus 33, 336–341 (1978). doi: 10.1016/0019-1035(78)90153-7 ADSCrossRefGoogle Scholar
  68. 68.
    Hubbard, W.B., Nellis, W.J., Mitchell, A.C., Holmes, N.C., McCandless, P.C., Limaye, S.S.: Interior structure of Neptune—comparison with Uranus. Science 253, 648–651 (1991). doi: 10.1126/science.253.5020.648 ADSCrossRefGoogle Scholar
  69. 69.
    Hussmann, H., Sohl, F., Spohn, T.: Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185, 258–273 (2006). doi: 10.1016/j.icarus.2006.06.005 ADSCrossRefGoogle Scholar
  70. 70.
    Iess, L., Asmar, S., Tortora, P.: MORE: an advanced tracking experiment for the exploration of Mercury with the mission BepiColombo. Acta Astron. 65, 666–675 (2009)CrossRefGoogle Scholar
  71. 71.
    Jacobson, R.: The orbits of the Neptunian satellites and the orientation of the pole of Neptune. Astron. J. 137, 4322–4329 (2009). doi: 10.1088/0004-6256/137/5/4322 ADSCrossRefGoogle Scholar
  72. 72.
    Jaekel, M., Reynaud, S.: Post-Einsteinian tests of linearized gravitation. Classical Quant. Grav. 22, 2135–2157 (2005). doi: 10.1088/0264-9381/22/11/015, arXiv:gr-qc/0502007 MathSciNetADSzbMATHCrossRefGoogle Scholar
  73. 73.
    Jaekel, M., Reynaud, S.: Post-Einsteinian tests of gravitation. Classical Quant. Grav. 23, 777–798 (2006). doi: 10.1088/0264-9381/23/3/015, arXiv:gr-qc/0510068 MathSciNetADSzbMATHCrossRefGoogle Scholar
  74. 74.
    Jaekel, M., Reynaud, S.: Radar ranging and Doppler tracking in post-Einsteinian metric theories of gravity. Classical Quant. Grav. 23, 7561–7579 (2006). doi: 10.1088/0264-9381/23/24/025, arXiv:gr-qc/0610155 MathSciNetADSzbMATHCrossRefGoogle Scholar
  75. 75.
    Jewitt, D., Luu, J., Marsden, B.G.: 1992 QB1. IAU circ 5611 (1992)Google Scholar
  76. 76.
    Johann, U., Dittus, H., Lämmerzahl, C.: Exploring the Pioneer anomaly: concept considerations for a Deep-Space Gravity Probe based on laser-controlled free-flying reference masses. In: Dittus, H., Lämmerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space, Astrophysics and Space Science Library, vol. 349, pp. 577–604 (2008). doi: 10.1007/978-3-540-34377-6_26
  77. 77.
    Kavelaars, J., Jones, L., Gladman, B., Parker, J.W., Petit, J.: The orbital and spatial distribution of the Kuiper Belt. In: Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 59–69 (2008)Google Scholar
  78. 78.
    Kepko, E.L., Khurana, K.K., Kivelson, M.G., Elphic, R.C., Russell, C.T.: Accurate determination of magnetic field gradients from four point vector measurements. I. Use of natural constraints on vector data obtained from a single spinning spacecraft. IEEE Trans. Magn. 32, 377–385 (1996). doi: 10.1109/20.486522 ADSCrossRefGoogle Scholar
  79. 79.
    Kirk, R.L., Soderblom, L.A., Brown, R.H.: Subsurface energy storage and transport for solar-powered geysers on Triton. Science 250, 424–429 (1990). doi: 10.1126/science.250.4979.424 ADSCrossRefGoogle Scholar
  80. 80.
    Kissel, J., Glasmachers, A., Grün, E., Henkel, H., Höfner, H., Haerendel, G., von Hoerner, H., Hornung, K., Jessberger, E.K., Krueger, F.R., Möhlmann, D., Greenberg, J.M., Langevin, Y., Silén, J., Brownlee, D., Clark, B.C., Hanner, M.S., Hoerz, F., Sandford, S., Sekanina, Z., Tsou, P., Utterback, N.G., Zolensky, M.E., Heiss, C.: Cometary and interstellar dust analyzer for comet Wild 2. J. Geophys. Res. 108, 8114 (2003). doi: 10.1029/2003JE002091 CrossRefGoogle Scholar
  81. 81.
    Kivelson, M.G., Khurana, K.K., Volwerk, M.: The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002). doi: 10.1006/icar.2002.6834 ADSCrossRefGoogle Scholar
  82. 82.
    Kliore, A.J., Anderson, J.D., Armstrong, J.W., Asmar, S.W., Hamilton, C.L., Rappaport, N.J., Wahlquist, H.D., Ambrosini, R., Flasar, F.M., French, R.G., Iess, L., Marouf, E.A., Nagy, A.F.: Cassini radio science. Space Sci. Rev. 115, 1–70 (2004). doi: 10.1007/s11214-004-1436-y ADSCrossRefGoogle Scholar
  83. 83.
    Lämmerzahl, C., Preuss, O., Dittus, H.: Is the physics within the Solar System really understood? In: Dittus, H., Lämmerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space, Astrophysics and Space Science Library, vol. 349, pp. 75–101 (2008). doi: 10.1007/978-3-540-34377-6_3
  84. 84.
    Leinweber, H.K., Russell, C.T., Torkar, K., Zhang, T.L., Angelopoulos, V.: An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field. Meas. Sci. Technol. 19(5), 055104 (2008). doi: 10.1088/0957-0233/19/5/055104 ADSCrossRefGoogle Scholar
  85. 85.
    Lenoir, B., Christophe, B., Lévy, A., Foulon, B., Reynaud, S., Courty, J.M., Lamine, B., Dittus, H., van Zoest, T., Lämmerzahl, C., Selig, H., Léon-Hirtz, S., Biancale, R., Métris, G., Sohl, F., Wolf, P.: Odyssey 2: a mission toward Neptune and Triton to test general relativity. In: 61st international astronautical congress, Prague, Czech Republic (2010). IAC-10.A3.6.5, arXiv:1107.2316
  86. 86.
    Lenoir, B., Christophe, B., Reynaud, S.: Measuring the absolute non-gravitational acceleration of a spacecraft: goals, devices, methods, performances. In: Journées 2011 de la Société Française d’Astronomie & d’Astrophysique, Paris, France (2011)., arXiv: 1110.0342
  87. 87.
    Lenoir, B., Christophe, B., Reynaud, S.: Unbiased acceleration measurements with an electrostatic accelerometer. Adv. Space Res. (2012). arXiv:1105.4979
  88. 88.
    Lenoir, B., Lévy, A., Foulon, B., Lamine, B., Christophe, B., Reynaud, S.: Electrostatic accelerometer with bias rejection for gravitation and Solar System physics. Adv. Space Res. 48(7), 1248–1257 (2011). doi: 10.1016/j.asr.2011.06.005, arXiv:1011.6263 ADSCrossRefGoogle Scholar
  89. 89.
    Levy, A., Christophe, B., Bério, P., Métris, G., Courty, J., Reynaud, S.: Pioneer 10 Doppler data analysis: disentangling periodic and secular anomalies. Adv. Space Res. 43, 1538–1544 (2009). doi: 10.1016/j.asr.2009.01.003, arXiv:0809.2682 [gr-qc] ADSCrossRefGoogle Scholar
  90. 90.
    Limaye, S.S., Sromovsky, L.A.: Winds of Neptune—voyager observations of cloud motions. J. Geophys. Res. 96, 18941–18960 (1991)ADSGoogle Scholar
  91. 91.
    Linfield, R.P., Colavita, M.M., Lane, B.F.: Atmospheric turbulence measurements with the Palomar testbed interferometer. Astrophys. J. 554, 505–513 (2001). doi: 10.1086/321372, arXiv:astro-ph/0102052 ADSCrossRefGoogle Scholar
  92. 92.
    Lorenz, R.D., Stiles, B.W., Kirk, R.L., Allison, M.D., del Marmo, P.P., Iess, L., Lunine, J.I., Ostro, S.J., Hensley, S.: Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319, 1649–1651 (2008)ADSCrossRefGoogle Scholar
  93. 93.
    Luszcz-Cook, S.H., de Pater, I., Ádámkovics, M., Hammel, H.B.: Seeing double at Neptune’s south pole. Icarus 208, 938–944 (2010). doi: 10.1016/j.icarus.2010.03.007, arXiv:1003.3240[astro-ph.EP] ADSCrossRefGoogle Scholar
  94. 94.
    Malhotra, R.: The origin of Pluto’s peculiar orbit. Nature 365, 819–821 (1993). doi: 10.1038/365819a0 ADSCrossRefGoogle Scholar
  95. 95.
    Markwardt, C.B.: Independent Confirmation of the Pioneer 10 anomalous acceleration. ArXiv General Relativity and Quantum Cosmology e-prints arXiv:gr-qc/0208046 (2002)
  96. 96.
    Marley, M., et al.: JPL Rapid Mission Architecture Neptune-Triton-KBO Study Final Report. Planetary Science Decadal Survey (2010)Google Scholar
  97. 97.
    Mauk, B.H., Krimigis, S.M., Cheng, A.F., Selesnick, R.S.: Energetic particles and hot plasmas of Neptune. In: Cruikshank, D.P., Matthews, M.S., Schumann, A.M. (eds.) Neptune and Triton, pp. 169–232 (1995)Google Scholar
  98. 98.
    Merlin, F., Alvarez-Candal, A., Delsanti, A., Fornasier, S., Barucci, M.A., DeMeo, F.E., de Bergh, C., Doressoundiram, A., Quirico, E., Schmitt, B.: Stratification of Methane Ice on Eris’ Surface. Astron. J. 137, 315–328 (2009). doi: 10.1088/0004-6256/137/1/315 ADSCrossRefGoogle Scholar
  99. 99.
    Moffat, J.W.: Gravitational theory, galaxy rotation curves and cosmology without dark matter. J. Cosmol. Astropart. P 5(3), 1–28 (2005). doi: 10.1088/1475-7516/2005/05/003, arXiv:astro-ph/0412195 MathSciNetADSGoogle Scholar
  100. 100.
    Moffat, J.W.: Scalar tensor vector gravity theory. J. Cosmol. Astropart. P 3(4), 1–18 (2006). doi: 10.1088/1475-7516/2006/03/004, arXiv:gr-qc/0506021 MathSciNetCrossRefGoogle Scholar
  101. 101.
    Murray, C.D., Beurle, K., Cooper, N.J., Evans, M.W., Williams, G.A., Charnoz, S.: The determination of the structure of Saturn’s F ring by nearby moonlets. Nature 453, 739–744 (2008). doi: 10.1038/nature06999 ADSCrossRefGoogle Scholar
  102. 102.
    Ness, N.F.: Intrinsic magnetic fields of the planets: Mercury to Neptune. Phil. Trans. R. Soc. Lond. A 349(1690), 249–260 (1994). doi: 10.1098/rsta.1994.0129 ADSCrossRefGoogle Scholar
  103. 103.
    Ness, N.F., Acuna, M.H., Burlaga, L.F., Connerney, J.E.P., Lepping, R.P.: Magnetic fields at Neptune. Science 246, 1473–1478 (1989)ADSCrossRefGoogle Scholar
  104. 104.
    Ness, N.F., Behannon, K.W., Lepping, R.P., Schatten, K.H.: Use of two magnetometers for magnetic field measurements on a spacecraft. J. Geophys. Res. 76, 3564–3573 (1971). doi: 10.1029/JA076i016p03564 ADSCrossRefGoogle Scholar
  105. 105.
    Nicholson, P.D., Mosqueira, I., Matthews, K.: Stellar occultation observations of Neptune’s rings: 1984–1988. Icarus 113, 295–330 (1995). doi: 10.1006/icar.1995.1025 ADSCrossRefGoogle Scholar
  106. 106.
    Nojiri, S., Odintsov, S.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4(1), 115–145 (2007). doi: 10.1142/S0219887807001928, arXiv:hep-th/0601213 MathSciNetzbMATHCrossRefGoogle Scholar
  107. 107.
    Noll, K.S., Grundy, W.M., Chiang, E.I., Margot, J.L., Kern, S.D.: Binaries in the Kuiper Belt. In: Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 345–363 (2008)Google Scholar
  108. 108.
    Olsen, Ø.: The constancy of the Pioneer anomalous acceleration. Astron. Astrophys. 463, 393–397 (2007). doi: 10.1051/0004-6361:20065906 ADSCrossRefGoogle Scholar
  109. 109.
    Podolak, M., Weizman, A., Marley, M.: Comparative models of Uranus and Neptune. Planet. Space Sci. 43, 1517–1522 (1995). doi: 10.1016/0032-0633(95)00061-5 ADSCrossRefGoogle Scholar
  110. 110.
    Porco, C.C.: An explanation for Neptune’s ring arcs. Science 253, 995–1001 (1991). doi: 10.1126/science.253.5023.995 ADSCrossRefGoogle Scholar
  111. 111.
    Prestage, J.D., Chung, S.S., Lim, L., Matevosian, A.: Compact microwave mercury ion clock for deep-space applications. In: IEEE International Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum, pp. 1113–1115 (2007). doi: 10.1109/FREQ.2007.4319251
  112. 112.
    Prockter, L.M., Rivkin, A.S., McNutt, R.L. Jr., Gold, R.E., Ostdiek, P.H., Leary, J.C., Fiehler, D.I., Oleson, S.R., Witzberger, K.E.: Enabling decadal survey science goals for primitive bodies using radioisotope electric propulsion. In: Mackwell, S., Stansbery, E. (eds.) 37th Annual Lunar and Planetary Science Conference, Lunar and Planetary Inst. Technical Report, vol. 37(1922) (2006)Google Scholar
  113. 113.
    Reuter, D.C., Stern, S.A., Scherrer, J., Jennings, D.E., Baer, J.W., Hanley, J., Hardaway, L., Lunsford, A., McMuldroch, S., Moore, J., Olkin, C., Parizek, R., Reitsma, H., Sabatke, D., Spencer, J., Stone, J., Throop, H., van Cleve, J., Weigle, G.E., Young, L.A.: Ralph: a visible/infrared imager for the new horizons Pluto/Kuiper Belt mission. Space Sci. Rev. 140, 129–154 (2008). doi: 10.1007/s11214-008-9375-7, arXiv:0709.4281 [astro-ph] ADSCrossRefGoogle Scholar
  114. 114.
    Reynaud, S., Jaekel, M.T.: Testing the Newton law at long distances. Int. J. Mod. Phys. A 20, 2294 (2005). doi: 10.1142/S0217751X05024523 ADSzbMATHCrossRefGoogle Scholar
  115. 115.
    Richardson, J.D., Belcher, J.W., Zhang, M., McNutt, R.L. Jr.: Low-energy ions near Neptune. J. Geophys. Res. Suppl. 96, 18993–19011 (1991)ADSGoogle Scholar
  116. 116.
    Rievers, B., Lämmerzahl, C.: High precision thermal modeling of complex systems with application to the flyby and Pioneer anomaly. Ann. Phys. 523, 439–449 (2011). doi: 10.1002/andp.201100081, arXiv:1104.3985 CrossRefGoogle Scholar
  117. 117.
    Robert, C., Fleury, B., Michau, V., Conan, J.M., Veyssiere, L., Magli, S., Vial, L.: Shack–Hartmann wavefront sensor using IR extended source. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6747 (2007). doi: 10.1117/12.738296
  118. 118.
    Salyk, C., Ingersoll, A.P., Lorre, J., Vasavada, A., Del Genio, A.D.: Interaction between eddies and mean flow in Jupiter’s atmosphere: analysis of Cassini imaging data. Icarus 185, 430–442 (2006). doi: 10.1016/j.icarus.2006.08.007 ADSCrossRefGoogle Scholar
  119. 119.
    Sandel, B.R., Herbert, F., Dessler, A.J., Hill, T.W.: Aurora and airglow on the night side of Neptune. Geophys. Res. Lett. 17, 1693–1696 (1990). doi: 10.1029/GL017i010p01693 ADSCrossRefGoogle Scholar
  120. 120.
    Saur, J., Neubauer, F.M., Glassmeier, K.: Induced magnetic fields in Solar System bodies. Space Sci. Rev. 152, 391–421 (2010). doi: 10.1007/s11214-009-9581-y ADSCrossRefGoogle Scholar
  121. 121.
    Sayanagi, K.M., Showman, A.P., Dowling, T.E.: The emergence of multiple robust zonal jets from freely evolving, three-dimensional stratified geostrophic turbulence with applications to Jupiter. J. Atmos. Sci. 65, 3947–1962 (2008). doi: 10.1175/2008JAS2558.1 CrossRefGoogle Scholar
  122. 122.
    Schubert, G., Anderson, J.D., Spohn, T., McKinnon, W.B.: Interior composition, structure and dynamics of the Galilean satellites. In: Bagenal, F., Dowling, T.E., McKinnon, W.B. (eds.) Jupiter. The Planet, Satellites and Magnetosphere, pp. 281–306 (2004)Google Scholar
  123. 123.
    Schubert, G., Anderson, J.D., Travis, B.J., Palguta, J.: Enceladus: present internal structure and differentiation by early and long-term radiogenic heating. Icarus 188, 345–355 (2007). doi: 10.1016/j.icarus.2006.12.012 ADSCrossRefGoogle Scholar
  124. 124.
    Selig, H., Christophe, B., Lenoir, B., Lämmerzahl, C.: Technology development for fundamental physics space missions aiming at high precision gravitational field measurements. In: 62nd International Astronautical Congress, Cape Town, South Africa, IAC-11.A2.3.12 (2011)Google Scholar
  125. 125.
    Smith, B.A., Soderblom, L.A., Banfield, D., Barnet, C., Beebe, R.F., Bazilevskii, A.T., Bollinger, K., Boyce, J.M., Briggs, G.A., Brahic, A.: Voyager 2 at Neptune—imaging science results. Science 246, 1422–1449 (1989). doi: 10.1126/science.246.4936.1422 ADSCrossRefGoogle Scholar
  126. 126.
    Soderblom, L.A., Becker, T.L., Kieffer, S.W., Brown, R.H., Hansen, C.J., Johnson, T.V.: Triton’s geyser-like plumes—discovery and basic characterization. Science 250, 410–415 (1990). doi: 10.1126/science.250.4979.410 ADSCrossRefGoogle Scholar
  127. 127.
    Spilker, L., Argo Team: Neptune Ring Science with Argo—a voyage through the Outer Solar System. Decadal Survey white paper (2010)Google Scholar
  128. 128.
    Srama, R., Ahrens, T.J., Altobelli, N., Auer, S., Bradley, J.G., Burton, M., Dikarev, V.V., Economou, T., Fechtig, H., Görlich, M., Grande, M., Graps, A., Grün, E., Havnes, O., Helfert, S., Horanyi, M., Igenbergs, E., Jessberger, E.K., Johnson, T.V., Kempf, S., Krivov, A.V., Krüger, H., Mocker-Ahlreep, A., Moragas-Klostermeyer, G., Lamy, P., Landgraf, M., Linkert, D., Linkert, G., Lura, F., McDonnell, J.A.M., Möhlmann, D., Morfill, G.E., Müller, M., Roy, M., Schäfer, G., Schlotzhauer, G., Schwehm, G.H., Spahn, F., Stübig, M., Svestka, J., Tschernjawski, V., Tuzzolino, A.J., Wäsch, R., Zook, H.A.: The Cassini Cosmic Dust Analyzer. Space Sci. Rev. 114, 465–518 (2004). doi: 10.1007/s11214-004-1435-z ADSCrossRefGoogle Scholar
  129. 129.
    Stanley, S., Bloxham, J.: Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151–153 (2004). doi: 10.1038/nature02376 ADSCrossRefGoogle Scholar
  130. 130.
    Stansberry, J., Argo Team: KBO Science with Argo—a voyage through the Outer Solar System. Decadal Survey white paper (2010)Google Scholar
  131. 131.
    Stansberry, J., Grundy, W., Brown, M.: Physical properties of Kuiper Belt objects and centaurs: Spitzer Space Telescope constraints. In: Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A., Dotson, R. (eds.) The Solar System Beyond Neptune, pp. 161–179 (2008)Google Scholar
  132. 132.
    Stevenson, D.: Planetary oceans. Sky Telescope 104, 38–44 (2002)ADSGoogle Scholar
  133. 133.
    Thomas, P.: The shape of Triton from limb profiles. Icarus 148, 587–588 (2000). doi: 10.1006/icar.2000.6511 ADSCrossRefGoogle Scholar
  134. 134.
    Touboul, P., Willemenot, E., Foulon, B., Josselin, V.: Accelerometers for CHAMP, GRACE and GOCE space missions: synergy and evolution. In: Joint Meeting of the International Gravity Commission and the International Geoid Commission No2, B. Geofis. Teor. Appl., vol. 40, pp. 321–327 (1999)Google Scholar
  135. 135.
    Turyshev, S.G., Toth, V.T.: The pioneer anomaly in the light of new data. Space Sci. Rev. 148, 149–167 (2009). doi: 10.1007/s11214-009-9543-4, arXiv:0906.0399 [gr-qc] ADSCrossRefGoogle Scholar
  136. 136.
    Turyshev, S.G., Toth, V.T.: The Pioneer Anomaly. Living Rev. Relativ. 13(4), 1–175 (2010). URL, arXiv:1001.3686 [gr-qc] ADSGoogle Scholar
  137. 137.
    Turyshev, S.G., Toth, V.T., Kinsella, G., Lee, S.C., Lok, S.M., Ellis, J.: Support for the thermal origin of the Pioneer anomaly. ArXiv e-prints 1204.2507 (2012)
  138. 138.
    Tyler, G.L., Sweetnam, D.N., Anderson, J.D., Borutzki, S.E., Campbell, J.K., Kursinski, E.R., Levy, G.S., Lindal, G.F., Lyons, J.R., Wood, G.E.: Voyager radio science observations of Neptune and Triton. Science 246, 1466–1473 (1989). doi: 10.1126/science.246.4936.1466 ADSCrossRefGoogle Scholar
  139. 139.
    Tyler, G.L., Linscott, I.R., Bird, M.K., Hinson, D.P., Strobel, D.F., Pätzold, M., Summers, M.E., Sivaramakrishnan, K.: The New Horizons Radio Science Experiment (REX). Space Sci. Rev. 140, 217–259 (2008). doi: 10.1007/s11214-007-9302-3 ADSCrossRefGoogle Scholar
  140. 140.
    Weaver, H.A., Gibson, W.C., Tapley, M.B., Young, L.A., Stern, S.A.: Overview of the New Horizons Science Payload. Space Sci. Rev. 140, 75–91 (2008). doi: 10.1007/s11214-008-9376-6, arXiv:0709.4261 ADSCrossRefGoogle Scholar
  141. 141.
    Will, C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 9(3), 1–100 (2006). URL Google Scholar
  142. 142.
    Wolf, P., Bordé, C.J., Clairon, A., Duchayne, L., Landragin, A., Lemonde, P., Santarelli, G., Ertmer, W., Rasel, E., Cataliotti, F.S., Inguscio, M., Tino, G.M., Gill, P., Klein, H., Reynaud, S., Salomon, C., Peik, E., Bertolami, O., Gil, P., Páramos, J., Jentsch, C., Johann, U., Rathke, A., Bouyer, P., Cacciapuoti, L., Izzo, D., de Natale, P., Christophe, B., Touboul, P., Turyshev, S.G., Anderson, J., Tobar, M.E., Schmidt-Kaler, F., Vigué, J., Madej, A.A., Marmet, L., Angonin, M., Delva, P., Tourrenc, P., Metris, G., Müller, H., Walsworth, R., Lu, Z.H., Wang, L.J., Bongs, K., Toncelli, A., Tonelli, M., Dittus, H., Lämmerzahl, C., Galzerano, G., Laporta, P., Laskar, J., Fienga, A., Roques, F., Sengstock, K.: Quantum physics exploring gravity in the outer solar system: the SAGAS project. Exp. Astron. 23, 651–687 (2009). doi: 10.1007/s10686-008-9118-5, arXiv:0711.0304 [gr-qc] ADSCrossRefGoogle Scholar
  143. 143.
    Zarka, P., Pedersen, B.M., Lecacheux, A., Kaiser, M.L., Desch, M.D., Farrell, W.M., Kurth, W.S.: Radio emissions from Neptune. In: Cruikshank, D.P., Matthews, M.S., Schumann, A.M. (eds.) Neptune and Triton, pp. 341–387 (1995)Google Scholar
  144. 144.
    Zharkov, V., et al.: Interior structure of the planets. In: Physics of Planetary Interiors (1978)Google Scholar
  145. 145.
    Zharkov, V.N., Gudkova, T.V. Models, figures and gravitational moments of Jupiter’s satellite Io: effects of the second order approximation. Planet. Space Sci. 58, 1381–1390 (2010). doi: 10.1016/j.pss.2010.06.004 ADSCrossRefGoogle Scholar
  146. 146.
    Zimmer, C., Khurana, K.K., Kivelson, M.G.: Subsurface oceans on Europa and Callisto: constraints from Galileo Magnetometer Observations. Icarus 147, 329–347 (2000). doi: 10.1006/icar.2000.6456 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • B. Christophe
    • 1
  • L. J. Spilker
    • 2
  • J. D. Anderson
    • 2
  • N. André
    • 3
  • S. W. Asmar
    • 2
  • J. Aurnou
    • 4
  • D. Banfield
    • 5
  • A. Barucci
    • 6
  • O. Bertolami
    • 7
  • R. Bingham
    • 8
  • P. Brown
    • 9
  • B. Cecconi
    • 6
  • J. -M. Courty
    • 10
  • H. Dittus
    • 11
  • L. N. Fletcher
    • 12
  • B. Foulon
    • 1
  • F. Francisco
    • 13
  • P. J. S. Gil
    • 13
  • K. H. Glassmeier
    • 14
  • W. Grundy
    • 15
  • C. Hansen
    • 16
  • J. Helbert
    • 17
  • R. Helled
    • 4
  • H. Hussmann
    • 17
  • B. Lamine
    • 10
  • C. Lämmerzahl
    • 18
  • L. Lamy
    • 6
  • R. Lehoucq
    • 19
  • B. Lenoir
    • 1
  • A. Levy
    • 1
  • G. Orton
    • 2
  • J. Páramos
    • 13
  • J. Poncy
    • 20
  • F. Postberg
    • 21
  • S. V. Progrebenko
    • 22
  • K. R. Reh
    • 2
  • S. Reynaud
    • 10
  • C. Robert
    • 1
  • E. Samain
    • 23
  • J. Saur
    • 24
  • K. M. Sayanagi
    • 25
  • N. Schmitz
    • 17
  • H. Selig
    • 18
  • F. Sohl
    • 17
  • T. R. Spilker
    • 2
  • R. Srama
    • 26
    • 27
  • K. Stephan
    • 17
  • P. Touboul
    • 1
  • P. Wolf
    • 28
  1. 1.ONERA - The French Aerospace LabChâtillonFrance
  2. 2.JPL/NASAPasadenaUSA
  3. 3.IRAP, CNRSUniv. Paul Sabatier ToulouseToulouseFrance
  4. 4.University of California Los AngelesLos AngelesUSA
  5. 5.Cornell UniversityIthacaUSA
  6. 6.Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris, CNRSUniv. Pierre et Marie CurieMeudonFrance
  7. 7.Universidade do PortoPortoPortugal
  8. 8.RALChiltonUK
  9. 9.Imperial College LondonLondonUK
  10. 10.LKB, CNRSParisFrance
  11. 11.DLR/Institute of Space SystemBremenGermany
  12. 12.University of OxfordOxfordUK
  13. 13.Instituto Superior TécnicoUniversidade Técnica de LisboaLisbonPortugal
  14. 14.Technical University of BraunschweigBraunschweigGermany
  15. 15.Lowell ObservatoryFlagstaffUSA
  16. 16.PSITucsonUSA
  17. 17.DLR/Institute of Planetary ResearchBerlinGermany
  18. 18.ZARMUniversity of BremenBremenGermany
  19. 19.CEA Saclay, Service d’AstrophysiqueGif-sur-YvetteFrance
  20. 20.Thales Alenia SpaceCannesFrance
  21. 21.University of HeidelbergHeidelbergGermany
  22. 22.JIVE, Joint Institute for VLBI in EuropeDwingelooThe Netherlands
  23. 23.Observatoire de la Côte d’Azur, GeoAzurNiceFrance
  24. 24.Universität zu KölnKölnGermany
  25. 25.Hampton University in VirginiaHamptonUSA
  26. 26.IRSUniversity of StuttgartStuttgartGermany
  27. 27.MPIKHeidelbergGermany
  28. 28.LNE-SYRTE, Observatoire de Paris, CNRS, UPMCParisFrance

Personalised recommendations