Advertisement

Experimental Astronomy

, Volume 34, Issue 2, pp 243–271 | Cite as

GETEMME—a mission to explore the Martian satellites and the fundamentals of solar system physics

  • Jürgen OberstEmail author
  • Valéry Lainey
  • Christophe Le Poncin-Lafitte
  • Veronique Dehant
  • Pascal Rosenblatt
  • Stephan Ulamec
  • Jens Biele
  • Jörn Spurmann
  • Ralph Kahle
  • Volker Klein
  • Ulrich Schreiber
  • Anja Schlicht
  • Nicolas Rambaux
  • Philippe Laurent
  • Benoît Noyelles
  • Bernard Foulon
  • Alexander Zakharov
  • Leonid Gurvits
  • Denis Uchaev
  • Scott Murchie
  • Cheryl Reed
  • Slava G. Turyshev
  • Jesus Gil
  • Mariella Graziano
  • Konrad Willner
  • Kai Wickhusen
  • Andreas Pasewaldt
  • Marita Wählisch
  • Harald Hoffmann
Original Article

Abstract

GETEMME (Gravity, Einstein’s Theory, and Exploration of the Martian Moons’ Environment), a mission which is being proposed in ESA’s Cosmic Vision program, shall be launched for Mars on a Soyuz Fregat in 2020. The spacecraft will initially rendezvous with Phobos and Deimos in order to carry out a comprehensive mapping and characterization of the two satellites and to deploy passive Laser retro-reflectors on their surfaces. In the second stage of the mission, the spacecraft will be transferred into a lower 1500-km Mars orbit, to carry out routine Laser range measurements to the reflectors on Phobos and Deimos. Also, asynchronous two-way Laser ranging measurements between the spacecraft and stations of the ILRS (International Laser Ranging Service) on Earth are foreseen. An onboard accelerometer will ensure a high accuracy for the spacecraft orbit determination. The inversion of all range and accelerometer data will allow us to determine or improve dramatically on a host of dynamic parameters of the Martian satellite system. From the complex motion and rotation of Phobos and Deimos we will obtain clues on internal structures and the origins of the satellites. Also, crucial data on the time-varying gravity field of Mars related to climate variation and internal structure will be obtained. Ranging measurements will also be essential to improve on several parameters in fundamental physics, such as the Post-Newtonian parameter β as well as time-rate changes of the gravitational constant and the Lense-Thirring effect. Measurements by GETEMME will firmly embed Mars and its satellites into the Solar System reference frame.

Keywords

Cosmic Vision Mars Phobos Deimos Laser Ranging Fundamental physics  Lander Electric propulsion 

References

  1. 1.
    Andert, T.P., et al.: Precise mass determination and the nature of Phobos. Geophys. Res. Lett. 37, L09202 (2010). doi: 10.1029/2009GL041829 CrossRefGoogle Scholar
  2. 2.
    Andert, T.P., Rosenblatt, P., Pätzold, M., Häusler, B. Tyler, G.L.: The internal structure of Phobos and hints to its origin derived from Mars Express Radio Science observations, EPSDPS Joint Meeting p. 210 (2011)Google Scholar
  3. 3.
    Avanesov, G.: Results of TV imaging Phobos—experiment VSK-Fregat. Planet. Space Sci. 39, 281–295 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    Barucci, M.A., et al.: NEO sample return mission. In: European Planetary Science Congress 2006, Berlin, Germany, 18–22 September 2006, p. 220Google Scholar
  5. 5.
    Bell, J.F., et al.: Solar eclipses of Phobos and Deimos observed from the surface of Mars. Nature 436, 55–57 (2005). s.l.: doi: 10.1038/nature03437 ADSCrossRefGoogle Scholar
  6. 6.
    Bibring J.-P., et al.: The Rosetta Lander (Philae) investigations. Space Sci. Rev. 128, 205–220 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Ciufolini, I., Pavlis, E.C.: A confirmation of the general relativistic prediction of the Lense–Thirring effect. Nature 431, 958–960 (2004). doi: 10.1038/nature03007 ADSCrossRefGoogle Scholar
  8. 8.
    Ciufolini, I., et al.: The LARES Space Experiment: LARES Orbit, Error Analysis and Satellite Structure. General Relativity and John Archibald Wheeler (2010)Google Scholar
  9. 9.
    Clark, B.E., et al.: Asteroid Space Weathering and Regolith Evolution. Asteroids III. s.l.: The University of Arizona Press (2002)Google Scholar
  10. 10.
    Craddock, R.A.: Are Phobos and Deimos the result of a giant impact? Icarus 211, 1150–1161 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    Dickey, J.O., et al.: Lunar laser ranging: a continuing legacy of the Apollo Program. Science 265, 482–490 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    Duev D.A., et al.: Spacecraft VLBI and Doppler tracking: algorithms and implementation. AA 541, A43 (2012)Google Scholar
  13. 13.
    Efroimsky, M., Lainey, V.: Physics of bodily tides in terrestrial planets and the appropriate scales of dynamical evolution. J. Geophys. Res. 112(s.l.: Issue E12) (2007)Google Scholar
  14. 14.
    Fienga, A., et al.: Planetary and lunar ephemerides INPOP10a. In: Journées Systèmes de Référence 2010, 20–22th September 2010, ParisGoogle Scholar
  15. 15.
    Galeev, A.A., et al.: The INTERBALL Project to study solar-terrestrial physics. Cosmic Res. 34(4), 313 (1996)ADSGoogle Scholar
  16. 16.
    Giuranna,M., Roush, T.L., Duxbury, T., Hogan, R.C., Carli, C., Geminale, A., Formisano, V.: Compositional interpretation of PFS/MEx and TES/MGS thermal infrared spectra of Phobos. Planet. Space Sci. 59, 1308–1325 (2011)Google Scholar
  17. 17.
    Gondet, B., et al.: Phobos observations by OMEGA/Mars Express hyperspectral imager. EPSC Abstracts, vol. 5. s.l.: EPSC2010–548, European Planetary Science Congress (2010)Google Scholar
  18. 18.
    Hamilton, D.P.: The asymmetric time-variable rings of Mars. Icarus 119, 153–172 (1996)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    Huygens VLBI tracking experiment 2008. JIVE Res. Note 0011Google Scholar
  20. 20.
    Jacobson, R.A.: The orbits and masses of the Martian satellites and the libration of Phobos. Astron. J. 139, 668–679 (2010). doi: 10.1088/0004-6256/139/2/668 ADSCrossRefGoogle Scholar
  21. 21.
    Jaekel, M.-T., Reynaud, S: Radar ranging and Doppler tracking in post-Einsteinian metric theories of gravity. Classical and Quantum Gravity 23(24), 7561–7579 (2006). doi: 10.1088/0264-9381/23/24/025 MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Kawaguchi, J., et al.: Hayabusa-2. Its technology and science accomplishment summary. Acta Astron. 62, 639–647 (2008)CrossRefGoogle Scholar
  23. 23.
    King, J.H.: A survey of long-term interplanetary magnetic field variations. JGR 81, 653 (1976)ADSCrossRefGoogle Scholar
  24. 24.
    Konopliv, A.S., et al.: A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182(1) (2006)Google Scholar
  25. 25.
    Lainey, V., et al.: First numerical ephemerides of the Martian moons. Astron. Astrophys. 465, 1075 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    Lynch, D.K., et al.: Infrared spectra of Deimos (1–13 \(\upmu \)m) and Phobos (3–13 \(\upmu \)m). Astron. J. 134, 1459 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    Määttänen, A., et al.: Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus 209, 452–469 (2010). doi: 10.1016/j.icarus.2010.05.017 CrossRefGoogle Scholar
  28. 28.
    Marov, M.Ya., et al.: Phobos-Grunt: Russian sample return mission. Adv. Space Res. 33(12), 2276–2280 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Mignard, F.: Evolution of the Martian satellites. Mon. Not. R. Astrom. Soc. 194, 365–379 (1981)ADSzbMATHGoogle Scholar
  30. 30.
    Murchie, S., et al.: Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 112, E05S03 (2007). doi: 10.1029/2006JE002682 ADSCrossRefGoogle Scholar
  31. 31.
    Murchie, S., et al.: Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. J. Geophys. Res. 114, E00D05 (2009). doi: 10.1029/2009JE003343 ADSCrossRefGoogle Scholar
  32. 32.
    Müller, J., Williams, J.G., Turyshev, S.G.: Lunar laser ranging contributions to relativity and geodesy. In: Dittus, H., Lämmerzahl, C., Turyshev, S.G. (eds.) Lasers, Clocks and Drag-Free Control. Springer (2008)Google Scholar
  33. 33.
    Neubert, R., et al.: The retro-reflector for the CHAMP satellite: final design and realization. In: Proc. of the 11th International Workshop on Laser Ranging, Deggendorf, Germany, 21–25 September, p. 260 (1998)Google Scholar
  34. 34.
    Noble, S.K.: The optical properties of the finest fraction of lunar soil: implications for space weathering. Meteor. Planet. Sci. 36(1), 31–42 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Oberst, J., et al.: The Smart Panoramic Optical Sensor Head (SPOSH)—a camera for observations of transient luminous events on planetary night sides. Planet. Space Sci. 59, 1–9 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Peale, S.J., et al.: The origin of the natural satellites. Treat. Geophys. 10, 465–508 (2007)CrossRefGoogle Scholar
  37. 37.
    Pieters, C., et al.: Aladdin: exploration and sample return of PHOBOS and Deimos. In: 30th Annual Lunar and Planetary Science Conference, 15–29 March 1999, Houston, TX, abstract no. 1155 (1999)Google Scholar
  38. 38.
    Pieters, C.M., et al.: Space weathering on airless bodies: resolving a mystery with lunar samples. Meteor. Planet. Sci. 35(5), 1101–1107 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    Preston, R.A.: Determination of Venus winds by ground-based radio tracking of the VEGA balloons. Science 231, 1414 (1986)ADSCrossRefGoogle Scholar
  40. 40.
    Rambaux, N., Williams, J.G.: The Moon’s physical librations and determination of their free modes. Celest. Mech. Dyn. Astron. 109(1), 85–100 (2011)Google Scholar
  41. 41.
    Rosenblatt, P., et al.: Revisiting Phobos’ origin issue from Mars express radio-science observations. EPSC (abstract) (2010)Google Scholar
  42. 42.
    Sagdeev, R.Z., Zakharov, A.V.: Brief history of the phobos mission. Nature 341, 581–585 (1989)ADSCrossRefGoogle Scholar
  43. 43.
    Sagdeev, R.Z.: Differential VLBI measurements of the venus atmosphere dynamics by balloons—VEGA Project. A&A 254, 387 (1992)ADSGoogle Scholar
  44. 44.
    Singer, S.F.: Origin of the Martian satellites Phobos and Deimos. Workhop on the exploration of Phobos and Deimos, p. 7020 (2007) (abstract)Google Scholar
  45. 45.
    Slade: ALSEP-quasar differential VLBI. Moon 17, 133 (1977)ADSCrossRefGoogle Scholar
  46. 46.
    Smith, D.E., et al.: Two-way laser link over interplanetary distance (2006)Google Scholar
  47. 47.
    Thomas, N., et al.: Observations of Phobos, Deimos, and bright stars with the imager for Mars pathfinder. J. Geophys. Res. 104(E4), 9055–9068 (1999)ADSCrossRefGoogle Scholar
  48. 48.
    Thomas, N., Stelter, R., Ivanov, A., Bridges, N.T., Herkenhoff K.E., and McEwen, A.S.: Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results. Planet. Space Sci. (2010). doi: 10.1016/j.pss.2010.04.018
  49. 49.
    Thomas, P.: Surface features of PHOBOS and Deimos. Icarus 40, 223–243 (1979)ADSCrossRefGoogle Scholar
  50. 50.
    Thomas, P.: In: Mars, Kieffer, H., et al. (eds.) Satellites of Mars: Geologic History, pp. 1257–1282. University of Arizona Press, Tucson (1992)Google Scholar
  51. 51.
    Thomas, P.C., et al.: The Surface of Deimos: contribution of materials and processes to its unique appearance. Icarus 123, 536–556 (1996)ADSCrossRefGoogle Scholar
  52. 52.
    Thornton, C.L., Border, J.S.: Radiometric Tracking Techniques for Deep Space Navigation. Wiley, Hoboken (2003)CrossRefGoogle Scholar
  53. 53.
    Ulamec, S., Biele J.: Surface elements and landing strategies for small bodies missions—Philae and beyond. Adv. Space Res. 44, 847–858 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    Ulamec, S., et al.: Hopper concepts for small bodies landers. Adv. Space Res. 47, 428–439 (2011)ADSCrossRefGoogle Scholar
  55. 55.
    Veverka, J., Burns, J.A.: The moons of Mars. Ann. Rev. Earth Planet. Sci. 8, 527–558 (1980)ADSCrossRefGoogle Scholar
  56. 55.
    Williams, J.G., et al.: Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001)ADSCrossRefGoogle Scholar
  57. 57.
    Willner, K.: The Martian Moon Phobos—a geodetic analysis of its motion, orientation, shape and physical parameters. Dissertation, Technische Universität Berlin (2010)Google Scholar
  58. 58.
    Willner, K., et al.: Phobos control point network, rotation, and shape. Earth Planet. Sci. Lett. 294, 541–546 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    Zakharov, A.V., et al.: Project “Phobos-Soil”: a complex sounding of the Phobos Moon. In: 37th Annual Lunar and Planetary Science Conference, 13–17 March 2006, League City, Texas, abstract no.1276 (2006)Google Scholar
  60. 60.
    Zakharov, A.V., et al.: Phobos sample return mission. In: First International Conference on the Exploration of Phobos and Deimos, Proceedings of the conference held 5–8 November 2007 in Moffett Field, California. LPI Contribution No. 1377, p. 43 (2007)Google Scholar
  61. 61.
    Zelenyi, L.M., et al.: Project of the Mission to Phobos. Solar Syst. Res. 44(1), 1 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Jürgen Oberst
    • 1
    Email author
  • Valéry Lainey
    • 3
  • Christophe Le Poncin-Lafitte
    • 4
  • Veronique Dehant
    • 5
  • Pascal Rosenblatt
    • 5
  • Stephan Ulamec
    • 6
  • Jens Biele
    • 6
  • Jörn Spurmann
    • 7
  • Ralph Kahle
    • 7
  • Volker Klein
    • 8
  • Ulrich Schreiber
    • 9
  • Anja Schlicht
    • 9
  • Nicolas Rambaux
    • 3
  • Philippe Laurent
    • 4
  • Benoît Noyelles
    • 3
  • Bernard Foulon
    • 10
  • Alexander Zakharov
    • 11
  • Leonid Gurvits
    • 12
  • Denis Uchaev
    • 13
  • Scott Murchie
    • 14
  • Cheryl Reed
    • 14
  • Slava G. Turyshev
    • 15
  • Jesus Gil
    • 16
  • Mariella Graziano
    • 16
  • Konrad Willner
    • 2
  • Kai Wickhusen
    • 1
  • Andreas Pasewaldt
    • 1
  • Marita Wählisch
    • 1
  • Harald Hoffmann
    • 1
  1. 1.German Aerospace Center (DLR)Institute of Planetary ResearchBerlinGermany
  2. 2.Technical University BerlinBerlinGermany
  3. 3.Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE)Paris ObservatoryParisFrance
  4. 4.Système de Référence Temps-Espace (SYRTE)Paris ObservatoryParisFrance
  5. 5.Royal Observatory of Belgium (ROB)BrusselsBelgium
  6. 6.German Aerospace Center (DLR)CologneGermany
  7. 7.German Aerospace Center (DLR)OberpfaffenhofenGermany
  8. 8.Kayser-Threde GmbHMunichGermany
  9. 9.Wettzell ObservatoryWettzellGermany
  10. 10.French National Aerospace Research CenterChatillonFrance
  11. 11.Space Research Institute of Russian Academy of Sciences (IKI)MoscowRussia
  12. 12.Joint Institute for VLBI in Europe (JIVE), Dwingeloo, and Department of Astrodynamics and Space MissionsDelft University of TechnologyDelftThe Netherlands
  13. 13.Moscow State University of Geodesy and Cartography (MIIGAiK)MoscowRussia
  14. 14.Applied Physics Laboratory (APL)LaurelUSA
  15. 15.Jet Propulsion Laboratory (JPL)PasadenaUSA
  16. 16.Innovating SolutionsGMV MadridSpain

Personalised recommendations