Advertisement

Experimental Astronomy

, Volume 33, Issue 2–3, pp 723–751 | Cite as

SARIM PLUS—sample return of comet 67P/CG and of interstellar matter

  • R. Srama
  • H. Krüger
  • T. Yamaguchi
  • T. Stephan
  • M. Burchell
  • A. T. Kearsley
  • V. Sterken
  • F. Postberg
  • S. Kempf
  • E. Grün
  • N. Altobelli
  • P. Ehrenfreund
  • V. Dikarev
  • M. Horanyi
  • Z. Sternovsky
  • J. D. Carpenter
  • A. Westphal
  • Z. Gainsforth
  • A. Krabbe
  • J. Agarwal
  • H. Yano
  • J. Blum
  • H. Henkel
  • J. Hillier
  • P. Hoppe
  • M. Trieloff
  • S. Hsu
  • A. Mocker
  • K. Fiege
  • S. F. Green
  • A. Bischoff
  • F. Esposito
  • R. Laufer
  • T. W. Hyde
  • G. Herdrich
  • S. Fasoulas
  • A. Jäckel
  • G. Jones
  • P. Jenniskens
  • E. Khalisi
  • G. Moragas-Klostermeyer
  • F. Spahn
  • H. U. Keller
  • P. Frisch
  • A. C. Levasseur-Regourd
  • N. Pailer
  • K. Altwegg
  • C. Engrand
  • S. Auer
  • J. Silen
  • S. Sasaki
  • M. Kobayashi
  • J. Schmidt
  • J. Kissel
  • B. Marty
  • P. Michel
  • P. Palumbo
  • O. Vaisberg
  • J. Baggaley
  • A. Rotundi
  • H. P. Röser
Original Article

Abstract

The Stardust mission returned cometary, interplanetary and (probably) interstellar dust in 2006 to Earth that have been analysed in Earth laboratories worldwide. Results of this mission have changed our view and knowledge on the early solar nebula. The Rosetta mission is on its way to land on comet 67P/Churyumov-Gerasimenko and will investigate for the first time in great detail the comet nucleus and its environment starting in 2014. Additional astronomy and planetary space missions will further contribute to our understanding of dust generation, evolution and destruction in interstellar and interplanetary space and provide constraints on solar system formation and processes that led to the origin of life on Earth. One of these missions, SARIM-PLUS, will provide a unique perspective by measuring interplanetary and interstellar dust with high accuracy and sensitivity in our inner solar system between 1 and 2 AU. SARIM-PLUS employs latest in-situ techniques for a full characterisation of individual micrometeoroids (flux, mass, charge, trajectory, composition) and collects and returns these samples to Earth for a detailed analysis. The opportunity to visit again the target comet of the Rosetta mission 67P/Churyumov-Gerasimeenternko, and to investigate its dusty environment six years after Rosetta with complementary methods is unique and strongly enhances and supports the scientific exploration of this target and the entire Rosetta mission. Launch opportunities are in 2020 with a backup window starting early 2026. The comet encounter occurs in September 2021 and the reentry takes place in early 2024. An encounter speed of 6 km/s ensures comparable results to the Stardust mission.

Keywords

Interstellar dust Cometary dust Churyumov Gerasimenko Interplanetary dust IMF Cosmic vision Sample return Dust collector Mass spectrometry 

References

  1. 1.
    Altobelli, N., et al.: Cassini between Venus and Earth: detection of interstellar dust. J. Geophys. Res. 108(A10), 8032 (2003)CrossRefGoogle Scholar
  2. 2.
    Altobelli, N., et al.: A new look into the Helios dust experiment data: presence of interstellar dust inside the Earth orbit. Astron. Astrophys. 448, 243–252 (2006)ADSGoogle Scholar
  3. 3.
    Altobelli, N., et al.: Interstellar dust flux measurements by the Galileo dust instrument between the orbit of Venus and Mars. J. Geophys. Res. 110, 7102 (2005)CrossRefGoogle Scholar
  4. 4.
    Baggaley, W.J.: Advanced meteor orbit radar observations of interstellar meteoroids. J. Geophys. Res. Space Phys. 105(A5), 10353–10361 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    Brownlee, D.E., et al.: Stardust: comet and interstellar dust sample return mission. J. Geophys. Res. 108(E10), SRD 1–1 (2003)CrossRefGoogle Scholar
  6. 6.
    Brownlee, D.E.: 164 co-authors: Comet Wild 2 under a microscope. Science 314, 1711–1716 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Burchell, M.J., et al.: Cosmic dust collection in aerogel. Ann. Rev. Earth Planet. Sci. 34, 385–418 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Carpenter, J.D., et al.: Dust detection in the ISS environment using filmed microchannel plates. J. Geophys. Res. 110, E05013 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Carpenter, J.D., Stevenson, T.J., Fraser, G.W., Bridges, J.C., Kearsley, A.T., Chater R.J., Hainsworth, S.V.: Nanometer hypervelocity dust impacts in low Earth orbit. J. Geophys. Res. 112, E08008 (2007). doi: 10.1029/2007JE002923 ADSCrossRefGoogle Scholar
  10. 10.
    Colangeli, L., et al.: Preface to the special section: space simulations in laboratory: experiments, instrumentation, and modeling. J. Geophys. Res. 109(E07S01), 1–2 (2004). doi: 10.1029/2004JE002292 Google Scholar
  11. 11.
    Colangeli, L., et al.: The new Rosetta targets—observation, simulations and instrument performances. Astrophys Space Sci. Library 311, 271–280 (2004)ADSGoogle Scholar
  12. 12.
    Colangeli, L., et al.: GIADA: the grain impact analyser and dust accumulator for the Rosetta space mission. Adv. Space Res. 39(3), 446–450 (2007)CrossRefGoogle Scholar
  13. 13.
    Colangeli, L., et al.: The Grain Impact Analyser and Dust Accumulator (GIADA) Experiment for the Rosetta Mission: design, performances and first results. Space Sci. Rev. 128, 803–821 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    Esposito, F., et al.: Physical aspect of an “impact sensor” for the detection of cometary dust momentum onboard the “Rosetta” space mission. Adv. Space Res. 29, 1159–1163 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    Gardner, D.J., et al.: Hole growth characterisation for hypervelocity impacts in thin targets. Int. J. Impact Eng. 19(7), 589–602 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    Graham, G.A., et al.: Observations on hypervelocity impact damage sustained by multi-layered insulation foils exposed in low earth orbit and simulated in the laboratory. Int. J. Impact Eng. 29, 307–316 (2003)CrossRefGoogle Scholar
  17. 17.
    Grün, E., Gustfason, B., Mann, I., Baguhl, M., Morfill, G.E., Staubach, P., Taylor, A., Zook, H.A.: Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994)ADSGoogle Scholar
  18. 18.
    Grün, E., et al.: DuneXpress. Exp. Astron. 23(3), 981 (2009). doi: 10.1007/s10686-008-9099-4 ADSCrossRefGoogle Scholar
  19. 19.
    Hoppe, P., et al.: SIMS studies of Allende projectiles fired into Stardust-type aluminium foils at 6 km/sec. Meteorit. Planet. Sci. 41.2, 197–209 (2006)MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Hoppe, P.: Origin and early evolution of comet nuclei. Space Sci. Series ISSI 28, 43–57 (2009)CrossRefGoogle Scholar
  21. 21.
    Hörz, F., et al.: Impact features on Stardust and Comet Wild 2 Dust. Science 314, 1716–1719 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    Hu, Q., et al.: The Orbitrap: a new mass spectrometer. J. Mass Spectr. 40, 430–443 (2005)CrossRefGoogle Scholar
  23. 23.
    Kearsley, A.T., Graham, G.A.: Multi-layered foil capture of micrometeoroids and orbital debris in low Earth orbit. Adv. Space Res. 34, 939–943 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    Kearsley, A.T., et al.: Impacts on Hubble Space Telescope solar arrays: discrimination between natural and man-made particles. Adv. Space Res. 35, 1254–1262 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    Kearsley, A.T., et al.: Sampling the orbital debris population using a foil residue collector in a Standardised Container For Experiments (SCE). In: Danesy, D. (ed.) Proceedings of the 4th European Conference on Space Debris, ESA Special Publication 587. The European Space Agency, Darmstadt, Germany, pp. 215–220 (2005)Google Scholar
  26. 26.
    Kearsley, A.T., et al.: MULPEX: a compact multi-layered polymer foil collector for micrometeoroids and orbital debris. Adv. Space Res. 35, 1270–1281 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Kearsley, A.T., et al.: Analytical scanning and transmission electron microscopy of laboratory impacts on Stardust aluminum foils: interpreting impact crater morphology and the composition of impact residues. Meteorit. Planet. Sci. 42.2, 191–210 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Kearsley, A.T., et al.: Dust from comet Wild 2: interpreting particle size, shape, structure and composition from impact features on the Stardust aluminum foils. Meteorit. Planet. Sci. (2007, submitted)Google Scholar
  29. 29.
    Kempf, S., et al.: Cassini between Earth and asteroid belt: discovery of charged interplanetary dust grains. Icarus 171(2), 317–335 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    Krueger, F.R., Werther, W., Kissel, J., Schmid, E.R.: Assignment of quinone derivates as the main compound class composing interstellar grains based on both polarity ions detected by the Cometary and Interstellar Dust Analyser (CIDA) onboard the spacecraft STARDUST. Rap. Comm. Mass Spec. 18, 103–111 (2004)CrossRefGoogle Scholar
  31. 31.
    Kuan Y.-J., et al.: A search for interstellar pyrimidine. Monthly Notices of the Royal Astronomical Society 345(10), 650–656 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Landgraf, M., et al.: Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements. J. Geophys. Res. 105, 10343 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    McDonnell, J.A.M., et al.: Near Earth environment. In: Grun, E. (ed.) Interplanetary Dust, pp. 163–261. Springer, London and Berlin (2001)CrossRefGoogle Scholar
  34. 34.
    McKeegan, K.D., et al.: Isotopic compositions of cometary matter returned by Stardust. Science 314, 1724–1728 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    Mumma, M.J.: Organic volatiles in comets: their relation to interstellar ices and solar nebula material, from stardust to planetesimals. Symposium held as part of the 108th Annual meeting of the ASP held at Santa Clara, California 24–26 June 1996. ASP Conference Series, vol. 122, pp. 369 (1997)Google Scholar
  36. 36.
    Nesvorny, D., Jenniskens, P., Levison, H.F., Bottke, W.F., Vokrouhlický, D., Gounelle, M.: Cometary origin of the zodiacal cloud and carbonaceous micrometeorites - implications for hot debris disks. Astrophys. J. 713, 816–836 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    Sandford, S.A., et al.: Organics captured from comet 81/PWild 2 by the Stardust spacecraft. Science 314, 1720 (2006)ADSCrossRefGoogle Scholar
  38. 38.
    Slavin, J.D., Frisch, P.C.: Exclusion of tiny interstellar dust grains from the heliosphere. Astron. Astrophys. 491, 53–68 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Simpson, J.A., Tuzzolino, A.J.: II.: Instruments for measurement of particle trajectory, velocity and mass. Nucl. Inst. Meths. Sect. A 279, 611–624 (1989)ADSCrossRefGoogle Scholar
  40. 40.
    Srama, R., et al.: The Cassini cosmic dust analyser. Space Sci. Rev. 114, 465–518 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Srama, R., et al.: Performance of an advanced dust telescope. In: Danesy D. (ed.) Proceedings of the 4th European Conference on Space Debris (ESA SP-587), p. 171. ESA/ESOC, 18–20 April 2005. Darmstadt, Germany (2005)Google Scholar
  42. 42.
    Srama, R., et al.: Development of an advanced dust telescope. Earth Moon Planets 95(1–4), 211–220 (2005). doi: 10.1007/s11038–005–9040-z ADSGoogle Scholar
  43. 43.
    Srama, R., Kempf, S., Moragas-Klostermeyer, G., Landgraf, M., Helfert, S., Sternovsky, Z., Rachev, M., Grün, E.: Laboratory tests of the large area mass analyzer. In: Proc. of “Dust in Planetary Systems”, pp. 209–213. ESA SP-643, Kauai, Hawaii, USA (2007)Google Scholar
  44. 44.
    Srama, R., et al.: Sample return of interstellar matter (SARIM). Exp. Astron. (2008). doi: 10.1007/s10686-008-9088-7 Google Scholar
  45. 45.
    Sterken, V.J., Altobelli, N., Kempf, S., Schwehm, G., Srama, R., Grün, E.: The flow of interstellar dust into the Solar System. Astron. Astrophys (2011, in press)Google Scholar
  46. 46.
    Stephan, T., et al.: TOF-SIMS analysis of cometary matter in Stardust aerogel tracks. Meteorit. Planet. Sci. 43(1–2), 233–246 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    Sternovsky, Z., Amyx, K., Bano, G., Landgraf, M., Horanyi, M., Knappmiller, S., Robertson, S., Grün, E., Srama, R., Auer, S.: The Large Area Mass Analyzer (Lama) instrument for the chemical analysis of interstellar dust particles. Rev. Sci. Instrum. 78, 014501 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Thissen, R.: person. communication (2010)Google Scholar
  49. 49.
    Tsou, P., et al.: Wild 2 and interstellar sample collection and Earth return. J. Geophys. Res. (2003). doi: 10.1029/2003JE002109 Google Scholar
  50. 50.
    Tuzzolino, A.J., et al.: Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2. J. Geophys. Res. 108(E10), 8115 (2003). doi: 10.1029/2003JE002086 CrossRefGoogle Scholar
  51. 51.
    Westphal, A.J., Fakra, S.C., Gainsforth, Z., Marcus, M.A., Ogliore, R.C., Butterworth, A.L.: Mixing fraction of inner solar system material in comet 81P/Wild 2. Astrophys. J. 694, 1 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    Westphal, A., et al.: LPSC 41, 2050 (2010)ADSGoogle Scholar
  53. 53.
    Witte, M., et al.: Astron. Astrophys. 426, 835 (2004)ADSCrossRefGoogle Scholar
  54. 54.
    Zolensky, M.E., et al.: Mineralogy and petrology of Comet 81P/Wild 2 nucleus samples. Science 314(5806), 1735 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • R. Srama
    • 1
    • 3
  • H. Krüger
    • 4
  • T. Yamaguchi
    • 5
  • T. Stephan
    • 6
  • M. Burchell
    • 7
  • A. T. Kearsley
    • 8
  • V. Sterken
    • 2
    • 9
  • F. Postberg
    • 2
    • 10
  • S. Kempf
    • 9
    • 11
  • E. Grün
    • 3
    • 11
  • N. Altobelli
    • 13
  • P. Ehrenfreund
    • 14
  • V. Dikarev
    • 15
  • M. Horanyi
    • 11
  • Z. Sternovsky
    • 11
  • J. D. Carpenter
    • 12
  • A. Westphal
    • 14
  • Z. Gainsforth
    • 14
  • A. Krabbe
    • 2
  • J. Agarwal
    • 15
  • H. Yano
    • 16
  • J. Blum
    • 9
  • H. Henkel
    • 17
  • J. Hillier
    • 18
  • P. Hoppe
    • 19
  • M. Trieloff
    • 10
  • S. Hsu
    • 11
  • A. Mocker
    • 2
    • 3
  • K. Fiege
    • 3
    • 9
  • S. F. Green
    • 18
  • A. Bischoff
    • 19
  • F. Esposito
    • 20
  • R. Laufer
    • 21
  • T. W. Hyde
    • 21
  • G. Herdrich
    • 2
  • S. Fasoulas
    • 2
  • A. Jäckel
    • 22
  • G. Jones
    • 23
  • P. Jenniskens
    • 24
  • E. Khalisi
    • 3
  • G. Moragas-Klostermeyer
    • 2
    • 3
  • F. Spahn
    • 15
  • H. U. Keller
    • 9
  • P. Frisch
    • 6
  • A. C. Levasseur-Regourd
    • 25
  • N. Pailer
    • 26
  • K. Altwegg
    • 22
  • C. Engrand
    • 27
  • S. Auer
    • 28
  • J. Silen
    • 29
  • S. Sasaki
    • 30
  • M. Kobayashi
    • 31
  • J. Schmidt
    • 15
  • J. Kissel
    • 32
  • B. Marty
    • 33
  • P. Michel
    • 34
  • P. Palumbo
    • 20
  • O. Vaisberg
    • 35
  • J. Baggaley
    • 36
  • A. Rotundi
    • 20
  • H. P. Röser
    • 2
  1. 1.Institut für Raumfahrtsysteme (IRS)Universität StuttgartStuttgartGermany
  2. 2.University of Stuttgart, IRSStuttgartGermany
  3. 3.Max Planck Institute Nuclear PhysicsHeidelbergGermany
  4. 4.Max Planck Institute Solar System ResearchKatlenburg-LindauGermany
  5. 5.JAXAKanagawaJapan
  6. 6.University of ChicagoChicagoUSA
  7. 7.University of KentCanterburyUK
  8. 8.Natural History MuseumLondonUK
  9. 9.University of BraunschweigBraunschweigGermany
  10. 10.University of HeidelbergHeidelbergGermany
  11. 11.University of Colorado, LASPBoulderUSA
  12. 12.ESA-ESTECNoordwijkThe Netherlands
  13. 13.ESA-ESRINMadridSpain
  14. 14.University of CaliforniaBerkeleyUSA
  15. 15.University of PotsdamPotsdamGermany
  16. 16.JAXA-ISAS, JSPECKanagawaJapan
  17. 17.von Hoerner & SulgerSchwetzingenGermany
  18. 18.Open UniversityMilton KeynesUK
  19. 19.University of MünsterMünsterGermany
  20. 20.University ParthenopeNapoliItaly
  21. 21.Baylor UniversityWacoUSA
  22. 22.University BernBernSwitzerland
  23. 23.University College LondonLondonUK
  24. 24.SETI InstituteMountain ViewUSA
  25. 25.UPMC, University ParisParisFrance
  26. 26.Astrium GmbHFriedrichshafenGermany
  27. 27.CNRS Paris, CSNSMParisFrance
  28. 28.A & M AssociatesBasyeUSA
  29. 29.FMIHelsinkiFinland
  30. 30.NAOJMizusawaJapan
  31. 31.PERC, CIOTNarashino CityJapan
  32. 32.MPEGarchingGermany
  33. 33.CRPGNancyFrance
  34. 34.CNRSNiceFrance
  35. 35.IKI-RSSIMoscowRussia
  36. 36.University of CanterburyChristchurchNew Zealand

Personalised recommendations