Experimental Astronomy

, Volume 34, Issue 2, pp 273–309 | Cite as

LEMUR: Large European module for solar Ultraviolet Research

European contribution to JAXA’s Solar-C mission
  • Luca Teriaca
  • Vincenzo Andretta
  • Frédéric Auchère
  • Charles M. Brown
  • Eric Buchlin
  • Gianna Cauzzi
  • J. Len Culhane
  • Werner Curdt
  • Joseph M. Davila
  • Giulio Del Zanna
  • George A. Doschek
  • Silvano Fineschi
  • Andrzej Fludra
  • Peter T. Gallagher
  • Lucie Green
  • Louise K. Harra
  • Shinsuke Imada
  • Davina Innes
  • Bernhard Kliem
  • Clarence Korendyke
  • John T. Mariska
  • Valentin Martínez-Pillet
  • Susanna Parenti
  • Spiros Patsourakos
  • Hardi Peter
  • Luca Poletto
  • Robert J. Rutten
  • Udo Schühle
  • Martin Siemer
  • Toshifumi Shimizu
  • Hector Socas-Navarro
  • Sami K. Solanki
  • Daniele Spadaro
  • Javier Trujillo-Bueno
  • Saku Tsuneta
  • Santiago Vargas Dominguez
  • Jean-Claude Vial
  • Robert Walsh
  • Harry P. Warren
  • Thomas Wiegelmann
  • Berend Winter
  • Peter Young
Original Article

Abstract

The solar outer atmosphere is an extremely dynamic environment characterized by the continuous interplay between the plasma and the magnetic field that generates and permeates it. Such interactions play a fundamental role in hugely diverse astrophysical systems, but occur at scales that cannot be studied outside the solar system. Understanding this complex system requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1′′ and 0.3′′), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 170 Å and 1270 Å. The LEMUR slit covers 280′′ on the Sun with 0.14′′ per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km s − 1 or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.

Keywords

Sun: atmosphere Space vehicles: instruments Techniques: spectroscopy ESA cosmic vision 

References

  1. 1.
    Trujillo Bueno, J.: Recent advances in chromospheric and coronal polarization diagnostics. In: Hasan, S.S., Rutten, R.J. (eds.) Magnetic Coupling between the Interior and Atmosphere of the Sun, p. 118 (2010)Google Scholar
  2. 2.
    Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, L147 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    Bryans, P., Young, P.R., Doschek, G.A.: Multiple component outflows in an active region observed with the EUV imaging spectrometer on Hinode. Astrophys. J. 715, 1012 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Schrijver, C.J., De Rosa, M.L.: Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Del Zanna, G., Mason, H.E., Cirtain, J.: SOHO/CDS observations of quiescent active region loops. In: SOHO-17, vol. 617. ESA Special Publication (2006)Google Scholar
  6. 6.
    Innes, D.E., Inhester, B., Axford, W.I., Wilhelm, K.: Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature 386, 811 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    Teriaca, L., Banerjee, D., Doyle, J.G.: SUMER observations of Doppler shift in the quiet Sun and in an active region. Astron. Astrophys. 349, 636 (1999)ADSGoogle Scholar
  8. 8.
    Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: Coronal loop oscillations observed with the Transition Region and Coronal Explorer. Astrophys. J. 520, 880 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Wang, T., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E.: Doppler shift oscillations of hot solar coronal plasma seen by SUMER: a signature of loop oscillations? Astrophys. J. Lett. 574, L101 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    Mariska, J.T., Muglach, K.: Doppler-shift, intensity, and density oscillations observed with the extreme ultraviolet imaging spectrometer on Hinode. Astrophys. J. 713, 573 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Wiegelmann, T., Neukirch, T.: An optimization principle for the computation of MHD equilibria in the solar corona. Astron. Astrophys. 457, 1053 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., Title, A.M., Shine, R.A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., Nagata, S.: Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Cirtain, J.W., Golub, L., Lundquist, L., van Ballegooijen, A., Savcheva, A., Shimojo, M., DeLuca, E., Tsuneta, S., Sakao, T., Reeves, K., Weber, M., Kano, R., Narukage, N., Shibasaki, K.: Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J.: Observing the roots of solar coronal heating—in the chromosphere. Astrophys. J. Lett. 701, L1 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., C.Schrijver, J., Title, A.M.: The origins of hot plasma in the solar corona. Science 331, 55 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    Del Zanna, G., Mason, H.E.: Solar active regions: SOHO/CDS and TRACE observations of quiescent coronal loops. Astron. Astrophys. 406, 1089 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    Warren, H.P., Kim, D.M., DeGiorgi, A.M., Ugarte-Urra, I.: Modeling evolving coronal loops with observations from stereo, Hinode, and trace. Astrophys. J. 713, 1095 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Bhattacharjee, A., Huang, Y., Yang, H., Rogers, B.: Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16(11), 112102 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Edmondson, J.K., Antiochos, S.K., DeVore, C.R., Zurbuchen, T.H.: Formation and reconnection of three-dimensional current sheets in the solar corona. Astrophys. J. 718, 72 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    Manchester, W. IV: Solar atmospheric dynamic coupling due to shear motions driven by the lorentz force. Astrophys. J. 666, 532 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    Green, L.M., Kliem, B., Wallace, A.J.: Photospheric flux cancellation and associated flux rope formation and eruption. Astron. Astrophys. 526, A2 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    van Ballegooijen, A.A., Martens, P.C.H.: Formation and eruption of solar prominences. Astrophys. J. 343, 971 (1989)ADSCrossRefGoogle Scholar
  23. 23.
    Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Wills-Davey, M.J.: Revealing the fine structure of coronal dimmings and associated flows with Hinode/EIS. Implications for understanding the source regions of sustained outflow following CMEs. Sol. Phys. 264, 119 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Krieger, A.S., Timothy, A.F., Roelof, E.C.: A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505 (1973)ADSCrossRefGoogle Scholar
  25. 25.
    Wilhelm, K., Dammasch, I.E., Marsch, E., Hassler, D.M.: On the source regions of the fast solar wind in polar coronal holes. Astron. Astrophys. 353, 749 (2000)ADSGoogle Scholar
  26. 26.
    Tu, C., Zhou, C., Marsch, E., Xia, L., Zhao, L., Wang, J., Wilhelm, K.: Solar wind origin in coronal funnels. Science 308, 519 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Wang, Y., Ko, Y., Grappin, R.: Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Del Zanna, G., Bromage, B.J.I., Mason, H.E.: Spectroscopic characteristics of polar plumes. Astron. Astrophys. 398, 743 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Teriaca, L., Poletto, G., Romoli, M., Biesecker, D.A.: The nascent solar wind: origin and acceleration. Astrophys. J. 588, 566 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Gabriel, A.H., Bely-Dubau, F., Lemaire, P.: The contribution of polar plumes to the fast solar wind. Astrophys. J. 589, 623 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Banerjee, D., Gupta, G.R., Teriaca, L.: Propagating MHD waves in coronal holes. Space Sci. Rev. 158, 267–288 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B.W., Matsuzaki, K., Nagata, S., Orozco Suárez, D., Shimizu, T., Shimojo, M., Shine, R.A., Suematsu, Y., Suzuki, T.K., Tarbell, T.D., Title, A.M.: The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T.: Flows and nonthermal velocities in solar active regions observed with the EUV imaging spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686, 1362–1371 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    Del Zanna, G., Aulanier, G., Klein, K.-L., Török, T.: A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, A137 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Luca Teriaca
    • 1
  • Vincenzo Andretta
    • 2
  • Frédéric Auchère
    • 3
  • Charles M. Brown
    • 4
  • Eric Buchlin
    • 3
  • Gianna Cauzzi
    • 5
  • J. Len Culhane
    • 6
  • Werner Curdt
    • 1
  • Joseph M. Davila
    • 7
  • Giulio Del Zanna
    • 8
  • George A. Doschek
    • 4
  • Silvano Fineschi
    • 9
  • Andrzej Fludra
    • 10
  • Peter T. Gallagher
    • 11
  • Lucie Green
    • 6
  • Louise K. Harra
    • 6
  • Shinsuke Imada
    • 12
  • Davina Innes
    • 1
  • Bernhard Kliem
    • 13
  • Clarence Korendyke
    • 4
  • John T. Mariska
    • 4
  • Valentin Martínez-Pillet
    • 14
  • Susanna Parenti
    • 15
  • Spiros Patsourakos
    • 16
  • Hardi Peter
    • 1
  • Luca Poletto
    • 17
  • Robert J. Rutten
    • 18
  • Udo Schühle
    • 1
  • Martin Siemer
    • 19
  • Toshifumi Shimizu
    • 12
  • Hector Socas-Navarro
    • 14
  • Sami K. Solanki
    • 1
  • Daniele Spadaro
    • 20
  • Javier Trujillo-Bueno
    • 14
  • Saku Tsuneta
    • 21
  • Santiago Vargas Dominguez
    • 6
  • Jean-Claude Vial
    • 3
  • Robert Walsh
    • 22
  • Harry P. Warren
    • 4
  • Thomas Wiegelmann
    • 1
  • Berend Winter
    • 6
  • Peter Young
    • 23
  1. 1.Max-Planck-Institut für SonnensystemforschungKatlenburg-LindauGermany
  2. 2.INAF—Osservatorio Astronomico di CapodimonteNapoliItaly
  3. 3.Institut d’Astrophysique SpatialeCNRS/Université Paris-Sud 11OrsayFrance
  4. 4.Space Science DivisionNaval Research LaboratoryWashingtonUSA
  5. 5.INAF—Osservatorio Astrofisico di ArcetriFlorenceItaly
  6. 6.UCL—Mullard Space Science LaboratorySurreyUK
  7. 7.NASA—Goddard Space Flight CenterGreenbeltUSA
  8. 8.University of CambridgeCambridgeUK
  9. 9.INAF—Osservatorio Astronomico di TorinoPino TorineseItaly
  10. 10.STFC Rutherford Appleton LaboratoryDidcotUK
  11. 11.School of PhysicsTrinity College DublinDublin 2Ireland
  12. 12.Institute of Space and Astronautical ScienceKanagawaJapan
  13. 13.Institute of Physics and AstronomyUniversity of PotsdamPotsdamGermany
  14. 14.Instituto de Astrofísica de CanariasLa Laguna, TenerifeSpain
  15. 15.Royal Observatory of BelgiumBruxellesBelgium
  16. 16.Department of Physics-Astrogeophysics SectionUniversity of IoanninaIoanninaGreece
  17. 17.CNR—Institute of Photonics and NanotechnologiesPaduaItaly
  18. 18.Sterrekundig Instituut UtrechtUtrechtThe Netherlands
  19. 19.DLR—Institute of Space SystemsBremenGermany
  20. 20.INAF—Osservatorio Astrofisico di CataniaCataniaItaly
  21. 21.National Astronomical Observatory of JapanTokyoJapan
  22. 22.University of Central LancashireLancashireUK
  23. 23.College of ScienceGeorge Mason UniversityFairfaxUSA

Personalised recommendations