Experimental Astronomy

, Volume 33, Issue 2–3, pp 445–489

Alfvén: magnetosphere—ionosphere connection explorers

  • M. Berthomier
  • A. N. Fazakerley
  • C. Forsyth
  • R. Pottelette
  • O. Alexandrova
  • A. Anastasiadis
  • A. Aruliah
  • P. -L. Blelly
  • C. Briand
  • R. Bruno
  • P. Canu
  • B. Cecconi
  • T. Chust
  • I. Daglis
  • J. Davies
  • M. Dunlop
  • D. Fontaine
  • V. Génot
  • B. Gustavsson
  • G. Haerendel
  • M. Hamrin
  • M. Hapgood
  • S. Hess
  • D. Kataria
  • K. Kauristie
  • S. Kemble
  • Y. Khotyaintsev
  • H. Koskinen
  • L. Lamy
  • B. Lanchester
  • P. Louarn
  • E. Lucek
  • R. Lundin
  • M. Maksimovic
  • J. Manninen
  • A. Marchaudon
  • O. Marghitu
  • G. Marklund
  • S. Milan
  • J. Moen
  • F. Mottez
  • H. Nilsson
  • N. Ostgaard
  • C. J. Owen
  • M. Parrot
  • A. Pedersen
  • C. Perry
  • J. -L. Pinçon
  • F. Pitout
  • T. Pulkkinen
  • I. J. Rae
  • L. Rezeau
  • A. Roux
  • I. Sandahl
  • I. Sandberg
  • E. Turunen
  • J. Vogt
  • A. Walsh
  • C. E. J. Watt
  • J. A. Wild
  • M. Yamauchi
  • P. Zarka
  • I. Zouganelis
Original Article

Abstract

The aurorae are dynamic, luminous displays that grace the night skies of Earth’s high latitude regions. The solar wind emanating from the Sun is their ultimate energy source, but the chain of plasma physical processes leading to auroral displays is complex. The special conditions at the interface between the solar wind-driven magnetosphere and the ionospheric environment at the top of Earth’s atmosphere play a central role. In this Auroral Acceleration Region (AAR) persistent electric fields directed along the magnetic field accelerate magnetospheric electrons to the high energies needed to excite luminosity when they hit the atmosphere. The “ideal magnetohydrodynamics” description of space plasmas which is useful in much of the magnetosphere cannot be used to understand the AAR. The AAR has been studied by a small number of single spacecraft missions which revealed an environment rich in wave-particle interactions, plasma turbulence, and nonlinear acceleration processes, acting on a variety of spatio-temporal scales. The pioneering 4-spacecraft Cluster magnetospheric research mission is now fortuitously visiting the AAR, but its particle instruments are too slow to allow resolve many of the key plasma physics phenomena. The Alfvén concept is designed specifically to take the next step in studying the aurora, by making the crucial high-time resolution, multi-scale measurements in the AAR, needed to address the key science questions of auroral plasma physics. The new knowledge that the mission will produce will find application in studies of the Sun, the processes that accelerate the solar wind and that produce aurora on other planets.

Keywords

Alfvén Cosmic vision Auroral acceleration region  Space plasmas 

References

  1. 1.
    Chaston, C.C., et al.: How important are dispersive Alfvén waves for auroral particle acceleration? Geophys. Res. Lett. 34 (2007). doi:10.1029/2006GL029144 Google Scholar
  2. 2.
    Dombeck, J.C., et al.: Alfvén waves and Poynting flux observed simultaneously by Polar and FAST in the plasma sheet boundary layer. J. Geophys. Res. 110 (2005). doi:10.1029/2005JA011269 Google Scholar
  3. 3.
    Chaston, C.C., et al.: FAST observations of inertial Alfvén waves in the dayside aurora. Geophys. Res. Lett. 26, 647–650 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Watt, C.E.J., Rankin, R.: Electron trapping in shear Alfvén waves that power the Aurora. Phys. Rev. Lett. 102, 045002 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Chaston, C.C., et al.: Width and brightness of auroral arcs driven by inertial Alfvén waves. J. Geophys. Res. 108 (2003). doi:10.1029/2001JA007537 Google Scholar
  6. 6.
    Stasiewicz, K., et al.: Identification of widespread turbulence of dispersive Alfvén waves. Geophys. Res. Lett. 27, 173–176 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Haerendel, G., Cosmic linear accelerators. In: Proc. of the International School and Workshop on Plasma Astrophysics, pp. 37–44. ESA SP-285, ESA, Noordwijk (1989)Google Scholar
  8. 8.
    Génot, V., et al.: A study of the propagation of Alfvén waves in the auroral density cavities. J. Geophys. Res. 104, 22649–22656 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    Génot, V., et al.: Alfvén wave interaction with inhomogeneous plasmas: acceleration and energy cascade towards small-scales. Ann. Geophys. 22, 2081–2096 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Chaston, C.C., et al.: Ionospheric erosion by Alfvén waves. J. Geophys. Res. 111 (2006). doi:10.1029/2005JA011367 Google Scholar
  11. 11.
    Akasofu, S.: The development of the auroral substorm. Planet. Space Sci. 12, 273–282 (1964)ADSCrossRefGoogle Scholar
  12. 12.
    Lui, A.T.Y.: A synthesis of magnetospheric substorm models. J. Geophys. Res. 96, 1849–1856 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    Mende, S., et al.: FAST and IMAGE-FUV observations of a substorm onset. J. Geophys. Res. 108 (2003). doi:10.1029/2002JA009787 Google Scholar
  14. 14.
    Newell, P.: Substorm cycle dependence of various types of aurora. J. Geophys. Res. 115 (2010). doi:10.1029/2010JA015331 Google Scholar
  15. 15.
    Rae, I.J., et al.: Optical characterization of the growth and spatial structure of a substorm onset arc. J. Geophys. Res. 115 (2010). doi:10.1029/2010JA015376 Google Scholar
  16. 16.
    Rae, I.J., et al.: Timing and localization of ionospheric signatures associated with substorm expansion phase onset. J. Geophys. Res. 114 (2009). doi:10.1029/2008JA013559 Google Scholar
  17. 17.
    Morioka, A., et al.: Vertical evolution of the auroral acceleration at substorm onset. Ann. Geophys. 27, 525–535 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Newman, D., et al.: Dynamics and instability of electron phase-space tubes. Phys. Rev. Lett. 86, 1239–1242 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    Goldman, M., et al.: Phase-space holes due to electron and ion beams accelerated by a current-driven potential ramp. Nonlinear Process. Geophys. 10, 37–44 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Chiu, Y.T., Schultz, M.: Self-consistent particle and parallel electrostatic field distributions in magnetospheric-ionospheric auroral region. J. Geophys. Res. 83, 629–642 (1978)ADSCrossRefGoogle Scholar
  21. 21.
    Ergun, R.E., et al.: Parallel electric fields in the upward current region of the aurora. Phys. Plasmas 9, 3695–3704 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    Knight, S.: Parallel electric fields. Planet. Space Sci. 21, 741–750 (1973)ADSCrossRefGoogle Scholar
  23. 23.
    McFadden, J., et al.: FAST observations of ion solitary waves. J. Geophys. Res. 108 (2003). doi:10.1029/2002JA009485 Google Scholar
  24. 24.
    Muschietti, L., Roth, I.: Ion two-stream instabilities in the auroral acceleration zone. J. Geophys. Res. 113 (2008). doi:10.1029/2007JA013005 Google Scholar
  25. 25.
    Muschietti, L., et al.: Phase-space electron holes along magnetic field lines. Geophys. Res. Lett. 26, 1093–1096 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    Berthomier, M., et al.: Stability of three-dimensional electron holes. Phys. Plasmas 15 (2008). doi:10.1063/1.3013452 Google Scholar
  27. 27.
    Ergun, R.E., et al.: Electron phase-space holes and the VLF saucer source region. Geophys. Res. Lett. 28, 3805–3808 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    Ergun, R.E., et al.: FAST satellite wave observations in the AKR source region. Geophys. Res. Lett. 25, 2061–2064 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    Wu, C.S., Lee, L.C.: Theory of the terrestrial kilometric radiation. Astrophys. J. 230, 621–626 (1979)ADSCrossRefGoogle Scholar
  30. 30.
    Louarn, P., et al.: Trapped electrons as the free energy source for auroral kilometric radiation. J. Geophys. Res. 95, 5983–5993 (1990)ADSCrossRefGoogle Scholar
  31. 31.
    Ergun, R.E., et al.: Electron cyclotron maser driven by charged particle acceleration from magnetic-field aligned electric fields. Astrophys. J. 538, 456–474 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Panchencko, M., et al.: Estimation of linear wave polarization of the auroral kilometric radiation. Radio Sci. 43, RS1006 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    Louarn, P., Le Quéau, D.: Generation of the auroral kilometric radiation in plasma cavities. Planet. Space Sci. 44, 199–224 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    Pottelette, R., et al.: Auroral plasma turbulence and the cause of AKR fine structure. J. Geophys. Res. 106, 8465–8476 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    Mutel, R.L., et al.: Striated auroral kilometric radiation emission: a remote tracer of ion solitary structures. J. Geophys. Res. 111, A10203 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Pottelette, R., et al.: Electrostatic shock properties inferred from AKR fine structure. Nonlinear Process. Geophys. 10, 87–92 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    Hess, S., et al.: Jovian S-burst generation by Alfvén waves. J. Geophys. Res. 112, A11212 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Su, Y., et al.: Short-burst auroral radiations in Alfvénic acceleration regions: FAST observations. J. Geophys. Res. 113, A08214 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Zarka, P.: Radio and plasma waves at the outer planets. Adv. Space Res. 33, 2045–2060 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Lamy, L., et al.: Properties of Saturn kilometric radiation measured within its source region. Geophys. Res. Lett. 37, L12104 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Jackman, C.M., Lamy, L., Freeman, M.P., Zarka, P., Cecconi, B., Kurth, W.S., Cowley, S.W.H., Dougherty, M.K.: On the character and distribution of lower-frequency radio emissions at Saturn and their relationship to substorm-like events. J. Geophys. Res. 114, A08211 (2009). doi:10.1029/2008JA013997 ADSCrossRefGoogle Scholar
  42. 42.
    Treumann, R.A.: The electron cyclotron maser for astrophysical applications. Astron. Astrophys. Rev. 13, 229–315 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    Zarka, P.: Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet. Space Sci. 55, 598–617 (2007)ADSCrossRefGoogle Scholar
  44. 44.
    Magnetospheric plasma sources and losses, chapter 2. In: Hultqvist, B., Oieroset, M., Paschmann, G., Treumann, R. (eds.) ISSI Space Sciences Series, vol 6. Kluwer Academic Publishers (1999)Google Scholar
  45. 45.
    Kistler, L., et al.: Cusp as a source for oxygen in the plasma sheet during geomagnetic storms. J. Geophys. Res. 115 (2010). doi:10.1029/2009JA014838 Google Scholar
  46. 46.
    Moen, J., et al.: On the relationship between ion upflow events and cusp auroral transients. Geophys. Res. Lett. 31 (2004). doi:10.1029/2004GL020129 MATHGoogle Scholar
  47. 47.
    Barabash, S., et al.: Martian atmospheric erosion rates. Science 315, 501–503 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    Nilsson, H., et al.: The ionospheric signature of the cusp as seen by incoherent scatter radar. J. Geophys. Res. 101, 10947–10963 (1996)ADSCrossRefGoogle Scholar
  49. 49.
    Strangeway, R.J., et al.: Factors controlling ionospheric outflows as observed at intermediate altitudes. J. Geophys Res. 110 (2005). doi:10.1029/2004JA010829 Google Scholar
  50. 50.
    André, M., et al.: Ion energization mechanisms at 1700 km in the auroral region. J. Geophys. Res. 103, 4199–4122 (1998)ADSCrossRefGoogle Scholar
  51. 51.
    Chaston, C.C., et al.: Auroral ion acceleration in dispersive Alfvén waves. J. Geophys. Res. 109 (2004). doi:10.1029/2003JA010053 Google Scholar
  52. 52.
    Cattell, C., et al.: The association of electrostatic ion cyclotron waves, ion and electron beams and field-aligned currents: FAST observations of an auroral zone crossing near midnight. Geophys. Res. Lett. 25, 2053–2056 (1998)ADSCrossRefGoogle Scholar
  53. 53.
    Vago, J.L., et al.: Transverse ion acceleration by localized lower hybrid waves in the topside ionosphere. J. Geophys. Res. 97, 16935–16957 (1992)ADSCrossRefGoogle Scholar
  54. 54.
    Nilsson, H., et al.: An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow. Ann. Geophys. 26, 145–157 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    Newell, P., Lyons, K., Meng, C.: A large survey of electron acceleration events. J. Geophys. Res. 101, 2599 (1996)ADSCrossRefGoogle Scholar
  56. 56.
    Paschmann, G., Haaland, S., Treuemann, R. (eds.): Auroral Plasma Physics, Chapter 5. ISSI Space Science Series Vol 15. Kluwer Academic Publishers (2003)Google Scholar
  57. 57.
    Sandahl, I. (ed.): In The Light of the Aurora, Optical Research in Northernmost Europe. TemaNord 2009:557, Nordic Council of Ministers, Copenhagen (2009)Google Scholar
  58. 58.
    Cavoit, C.: Closed loop applied to magnetic measurements in the range of 0.1–50 MHz. Rev. Sci. Instrum. 77, 064703 (2006). doi:10.1063/1.2214693 CrossRefGoogle Scholar
  59. 59.
    Krasnoselskikh, V.V., Natanzon, A.M., Reznikov, A.E., Schyokotov, A.Y., Klimov, S.I., Kruglyi, A.E., Woolliscroft, L.J.C.: Current measurements in space plasmas and the problem of separating between spatial and temporal variations in the field of a plane electromagnetic wave. Adv. Space Res. 11(9), 37–40 (1991)ADSCrossRefGoogle Scholar
  60. 60.
    Bekkeng, T.A., Jacobsen, K.S., Bekkeng, J.K., Pedersen, A., Lindem, T., Lebreton, J.-P., Moen, J.I.: Design of a novel multi-needle Langmuir probe system. Meas. Sci. Technol. 21, 085903 (2010). doi:10.1088/0957-0233/21/8/085903 CrossRefGoogle Scholar
  61. 61.
    Bannister, N.P., Bunce, E.J., Cowley, S.W.H., Fairbend, R., Fraser, G.W., Hamilton, F.J., Lapington, J.S., Lees, J.E., Lester, M., Milan, S.E., Pearson, J.F., Price, G.J., Willingale, R.: A Wide Field Auroral Imager (WFAI) for low earth orbit missions. Ann. Geophys. 25, 519 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • M. Berthomier
    • 1
  • A. N. Fazakerley
    • 2
  • C. Forsyth
    • 2
  • R. Pottelette
    • 1
  • O. Alexandrova
    • 3
  • A. Anastasiadis
    • 5
  • A. Aruliah
    • 6
  • P. -L. Blelly
    • 7
  • C. Briand
    • 3
  • R. Bruno
    • 8
  • P. Canu
    • 4
  • B. Cecconi
    • 3
  • T. Chust
    • 4
  • I. Daglis
    • 5
  • J. Davies
    • 9
  • M. Dunlop
    • 9
  • D. Fontaine
    • 4
  • V. Génot
    • 7
  • B. Gustavsson
    • 10
  • G. Haerendel
    • 11
  • M. Hamrin
    • 12
  • M. Hapgood
    • 9
  • S. Hess
    • 3
  • D. Kataria
    • 2
  • K. Kauristie
    • 13
  • S. Kemble
    • 14
  • Y. Khotyaintsev
    • 15
  • H. Koskinen
    • 13
  • L. Lamy
    • 3
  • B. Lanchester
    • 10
  • P. Louarn
    • 7
  • E. Lucek
    • 16
  • R. Lundin
    • 17
  • M. Maksimovic
    • 3
  • J. Manninen
    • 18
  • A. Marchaudon
    • 19
  • O. Marghitu
    • 20
  • G. Marklund
    • 21
  • S. Milan
    • 22
  • J. Moen
    • 23
  • F. Mottez
    • 24
  • H. Nilsson
    • 17
  • N. Ostgaard
    • 25
  • C. J. Owen
    • 2
  • M. Parrot
    • 19
  • A. Pedersen
    • 23
  • C. Perry
    • 9
  • J. -L. Pinçon
    • 19
  • F. Pitout
    • 7
  • T. Pulkkinen
    • 26
  • I. J. Rae
    • 27
  • L. Rezeau
    • 4
  • A. Roux
    • 4
  • I. Sandahl
    • 17
  • I. Sandberg
    • 5
  • E. Turunen
    • 28
  • J. Vogt
    • 29
  • A. Walsh
    • 2
  • C. E. J. Watt
    • 27
  • J. A. Wild
    • 30
  • M. Yamauchi
    • 17
  • P. Zarka
    • 3
  • I. Zouganelis
    • 1
  1. 1.Laboratoire de Physique des Plasmas (LPP)Observatoire de St MaurSaint-Maur des Fossés CedexFrance
  2. 2.Mullard Space Science LaboratoryUniversity College LondonDorkingUK
  3. 3.Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique (LESIA)Observatoire de ParisMeudon CedexFrance
  4. 4.Laboratoire de Physique des Plasmas (LPP/CNRS)Ecole PolytechniquePalaiseau CedexFrance
  5. 5.Institute for Space Applications and Remote Sensing (ISARS)National Observatory of AthensAthensGreece
  6. 6.Atmospheric Physics Laboratory (APL), Department of Physics and AstronomyUniversity College LondonLondonUK
  7. 7.Institut de Recherche en Astrophysique et Planétologie (IRAP)Toulouse Cedex 4France
  8. 8.Institute of Physics of Interplanetary SpaceINAFRomeItaly
  9. 9.Rutherford Appleton Laboratory (RAL)STFCHarwellUK
  10. 10.Space Environment Physics Group, School of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
  11. 11.Max-Planck-Institut fur extraterrestrische PhysikGarchingGermany
  12. 12.Department of PhysicsUmea UniversityUmeaSweden
  13. 13.Space Research UnitFinnish Meteorological Institute (FMI)HelsinkiFinland
  14. 14.EADS AstriumStevenageUK
  15. 15.Angstrom LaboratorySwedish Institute of Space Physics (IRF)UppsalaSweden
  16. 16.Space and Atmospheric Physics GroupThe Blackett Laboratory, Imperial College LondonLondonUK
  17. 17.Swedish Institute of Space Physics (IRF)KirunaSweden
  18. 18.Sodankyla Geophysical Observatory (SGO)University of OuluSodankylaFinland
  19. 19.Laboratoire de Physique et Chimie de l’Environnement et de l’Espace (LPC2E)CNRSOrléans Cedex 2France
  20. 20.Institute for Space Sciences (ISS)Bucharest-MagureleRomania
  21. 21.Division of Plasma Physics, Alfven LaboratoryKTH, Royal Institute of TechnologyStockholmSweden
  22. 22.Radio and Space Plasma Physics, Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  23. 23.Plasma and Space Physics Group, Department of PhysicsUniversity of OsloOsloNorway
  24. 24.Laboratoire Univers et Theories (LUTH)Observatoire de ParisMeudon cedexFrance
  25. 25.Departments of Physics and TechnologyUniversity of BergenBergenNorway
  26. 26.School of Electrical EngineeringAalto UniversityAaltoFinland
  27. 27.Department of PhysicsUniversity of AlbertaEdmontonCanada
  28. 28.EISCAT HeadquartersKirunaSweden
  29. 29.School of Engineering and ScienceJacobs University BremenBremenGermany
  30. 30.Space Plasma Environment and Radio Science GroupDepartment of Physics, InfoLab21, Lancaster UniversityLancasterUK

Personalised recommendations