Experimental Astronomy

, Volume 33, Issue 2–3, pp 237–269

Solar Particle Acceleration Radiation and Kinetics (SPARK)

A mission to understand the nature of particle acceleration
  • Sarah A. Matthews
  • David R. Williams
  • Karl-Ludwig Klein
  • Eduard P. Kontar
  • David M. Smith
  • Andreas Lagg
  • Sam Krucker
  • Gordon J. Hurford
  • Nicole Vilmer
  • Alexander L. MacKinnon
  • Valentina V. Zharkova
  • Lyndsay Fletcher
  • Iain G. Hannah
  • Philippa K. Browning
  • Davina E. Innes
  • Gerard Trottet
  • Clare Foullon
  • Valery M. Nakariakov
  • Lucie M. Green
  • Herve Lamoureux
  • Colin Forsyth
  • David M. Walton
  • Mihalis Mathioudakis
  • Achim Gandorfer
  • Valentin Martinez-Pillet
  • Olivier Limousin
  • Erwin Verwichte
  • Silvia Dalla
  • Gottfried Mann
  • Henri Aurass
  • Thomas Neukirch
Original Article

Abstract

Energetic particles are critical components of plasma populations found throughout the universe. In many cases particles are accelerated to relativistic energies and represent a substantial fraction of the total energy of the system, thus requiring extremely efficient acceleration processes. The production of accelerated particles also appears coupled to magnetic field evolution in astrophysical plasmas through the turbulent magnetic fields produced by diffusive shock acceleration. Particle acceleration is thus a key component in helping to understand the origin and evolution of magnetic structures in, e.g. galaxies. The proximity of the Sun and the range of high-resolution diagnostics available within the solar atmosphere offers unique opportunities to study the processes involved in particle acceleration through the use of a combination of remote sensing observations of the radiative signatures of accelerated particles, and of their plasma and magnetic environment. The SPARK concept targets the broad range of energy, spatial and temporal scales over which particle acceleration occurs in the solar atmosphere, in order to determine how and where energetic particles are accelerated. SPARK combines highly complementary imaging and spectroscopic observations of radiation from energetic electrons, protons and ions set in their plasma and magnetic context. The payload comprises focusing-optics X-ray imaging covering the range from 1 to 60 keV; indirect HXR imaging and spectroscopy from 5 to 200 keV, γ-ray spectroscopic imaging with high-resolution LaBr3 scintillators, and photometry and source localisation at far-infrared wavelengths. The plasma environment of the regions of acceleration and interaction will be probed using soft X-ray imaging of the corona and vector magnetography of the photosphere and chromosphere. SPARK is designed for solar research. However, in addition it will be able to provide exciting new insights into the origin of particle acceleration in other regimes, including terrestrial gamma-ray flashes (TGF), the origin of γ-ray bursts, and the possible existence of axions.

Keywords

Sun: atmosphere Particle acceleration Space missions: instruments ESA Cosmic vision 

References

  1. 1.
    Alexander, D., Dunphy, P.P., MacKinnon, A.L.: High-energy gamma-ray emission from solar flares: constraining the accelerated proton spectrum. Sol. Phys. 151, 147–167 (1994). doi:10.1007/BF00654088 ADSCrossRefGoogle Scholar
  2. 2.
    Bamert, K., Kallenbach, R., Ness, N.F., Smith, C.W., Terasawa, T., Hilchenbach, M., Wimmer-Schweingruber, R.F., Klecker, B.: Hydromagnetic wave excitation upstream of an interplanetary traveling shock. ApJ 601, L99–L102 (2004). doi:10.1086/381962 ADSCrossRefGoogle Scholar
  3. 3.
    Bentley, R.D., Klein, K.-L., van Driel-Gesztelyi, L., Démoulin, P., Trottet, G., Tassetto, P., Marty, G.: Magnetic activity associated with radio noise storms. Sol. Phys. 193, 227–245 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Boggs, S.E., Coburn, W., Kalemci, E.: Gamma-Ray polarimetry of two X-class solar flares. ApJ 638, 1129–1139 (2006). doi:10.1086/498930 ADSCrossRefGoogle Scholar
  5. 5.
    Carlson, E.D., Li-Sheng, T.: Pseudoscalar conversion and X-rays from the sun. Phys. Lett. B 365, 193–201 (1996). doi:10.1016/0370-2693(95)01250-8 ADSCrossRefGoogle Scholar
  6. 6.
    Cebula, R.P., Thuillier, G.O., Vanhoosier, M.E., Hilsenrath, E., Herse, M., Brueckner, G.E., Simon, P.C.: Observations of the solar irradiance in the 200–350 NM interval during the ATLAS-1 mission: a comparison among three sets of measurements-SSBUV, SOLSPEC and SUSIM. GRL 23, 2289–2292 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    Chupp, E.L., Ryan, J.M.: High energy neutron and pion-decay gamma-ray emissions from solar flares. Res. A&A, 9, 11–40 (2009). doi:10.1088/1674-4527/9/1/003 ADSGoogle Scholar
  8. 8.
    Chupp, E.L., Forrest, D.J., Ryan, J.M., Cherry, M.L., Reppin, C., Kanbach, G., Rieger, E., Pinkau, K., Share, G.H., Kinzer, R.L.: Observation of the 2.223 MeV gamma-ray line on the SMM satellite - the event of 1980 June 7. ApJ 244, L171–L174 (1981). doi:10.1086/183505 ADSCrossRefGoogle Scholar
  9. 9.
    Dunphy, P.P., Chupp, E.L., Bertsch, D.L., Schneid, E.J., Gottesman, S.R., Kanbach, G.: Gamma-Rays and neutrons as a probe of flare proton spectra: the solar flare of 11 June 1991. Sol. Phys. 187, 45–57 (1999).ADSGoogle Scholar
  10. 10.
    Dwyer, J.R., Smith, D.M.: A comparison between Monte Carlo simulations of runaway breakdown and terrestrial gamma-ray flash observations. GRL 322, L22804 (2005). doi:10.1029/2005GL023848 CrossRefGoogle Scholar
  11. 11.
    Fishman, G.J., Bhat, P.N., Mallozzi, R., Horack, J.M., Koshut, T., Kouveliotou, C., Pendleton, G.N., Meegan, C.A., Wilson, R.B., Paciesas, W.S., Goodman, S.J., Christian, H.J.: Discovery of intense gamma-ray flashes of atmospheric origin. Science 264, 1313–1316 (1994). doi:10.1126/science.264.5163.1313 ADSCrossRefGoogle Scholar
  12. 12.
    Fleishman, G.D., Kontar, E.P.: Sub-Thz radiation mechanisms in solar flares. ApJ 709, L127–L132 (2010). doi:10.1088/2041-8205/709/2/L127 ADSCrossRefGoogle Scholar
  13. 13.
    Grefenstette, B.W., Smith, D.M., Hazelton, B.J., Lopez, L.I.: First RHESSI terrestrial gamma ray flash catalog. J. Geophys. Res. 114(A13), A02314 (2009). doi:10.1029/2008JA013721 CrossRefGoogle Scholar
  14. 14.
    Hannah, I.G., Hurford, G.J., Hudson, H.S., Lin, R.P., van Bibber, K.: First limits on the 3-200 keV X-ray spectrum of the quiet sun using RHESSI. ApJ. 659, L77–L80 (2007). doi:10.1086/516750 ADSCrossRefGoogle Scholar
  15. 15.
    Hannah, I.G., Krucker, S., Hudson, H.S., Christe, S., Lin, R.P.: An intriguing solar microflare observed with RHESSI, Hinode, and TRACE. A&A 481, L45–L48 (2008). doi:10.1051/0004-6361:20079019 ADSCrossRefGoogle Scholar
  16. 16.
    Hannah, I.G., Hudson, H.S., Hurford, G.J., Lin, R.P.: Constraining the hard X-ray properties of the quiet sun with new RHESSI observations. ApJ 724, 487–492 (2010). doi:10.1088/0004-637X/724/1/487 ADSCrossRefGoogle Scholar
  17. 17.
    Harrison, F., et al.: SPIE 7732, 77320S (2010)CrossRefGoogle Scholar
  18. 18.
    Holman, G.D., Sui, L., Schwartz, R.A., Emslie, A.G.: Electron bremsstrahlung hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. ApJ 595, L97–L101 (2003). doi:10.1086/378488 ADSCrossRefGoogle Scholar
  19. 19.
    Hurford, G.J., Schmahl, E.J., Schwartz, R.A., Conway, A.J., Aschwanden, M.J., Csillaghy, A., Dennis, B.R., Johns-Krull, C., Krucker, S., Lin, R.P., McTiernan, J., Metcalf, T.R., Sato, J., Smith, D.M.: The RHESSI imaging concept. Solar Phys. 210, 61–68 (2002). doi:10.1023/A:1022436213688 ADSCrossRefGoogle Scholar
  20. 20.
    Hurford, G.J., Schwartz, R.A., Krucker, S., Lin, R.P., Smith, D.M., Vilmer, N.: First gamma-ray images of a solar flare. ApJ 595, L77–L80 (2003). doi:10.1086/378179 ADSCrossRefGoogle Scholar
  21. 21.
    Hurford, G.J., Krucker, S., Lin, R.P., Schwartz, R.A., Share, G.H., Smith, D.M.: Gamma-ray imaging of the 2003 October/November solar flares. ApJ 644, L93–L96 (2006). doi:10.1086/505329 ADSCrossRefGoogle Scholar
  22. 22.
    Kai, K., Melrose, D.B., Suzuki, S.: Storms. In: McLean, D.J., Labrum, N.R. (eds.) Solar radiophysics: studies of emission from the Sun at metre wavelengths, pp. 415–441. Cambridge Univ. Press (1985)Google Scholar
  23. 23.
    Kašparová, J., Kontar, E.P., Brown, J.C.: Hard X-ray spectra and positions of solar flares observed by RHESSI: photospheric albedo, directivity and electron spectra. A&A 466, 705–712 (2007). doi:10.1051/0004-6361:20066689 ADSCrossRefGoogle Scholar
  24. 24.
    Kaufmann, P., Raulin, J.-P., de Castro, C.G.G., Levato, H., Gary, D.E., Costa, J.E.R., Marun, A., Pereyra, P., Silva, A.V.R., Correia, E.: A new solar burst spectral component emitting only in the terahertz range. ApJ 603, L121–L124 (2004). doi:10.1086/383186 ADSCrossRefGoogle Scholar
  25. 25.
    Kocharov, L.G., Lee, J.W., Zirin, H., Kovaltsov, G.A., Usoskin, I.G., Pyle, K.R., Shea, M.A., Smart, D.F.: Neutron and electromagnetic emissions during the 1990 May 24 solar flare. Sol. Phys. 155, 149–170 (1994). doi:10.1007/BF00670736 ADSCrossRefGoogle Scholar
  26. 26.
    Kocharov, L., Debrunner, H., Kovaltsov, G., Lockwood, J., McConnell, M., Nieminen, P., Rank, G., Ryan, J., Schoenfelder, V.: Deduced spectrum of interacting protons accelerated after the impulsive phase of the 15 June 1991 solar flare. A&A 340, 257–264 (1998).ADSGoogle Scholar
  27. 27.
    Kontar, E.P., Brown, J.C.: Solar flare hard X-ray spectra possibly inconsistent with the collisional thick target model. ASR 38, 945–950 (2006). doi:10.1016/j.asr.2005.09.029 CrossRefGoogle Scholar
  28. 28.
    Kontar, E.P., MacKinnon, A.L., Schwartz, R.A., Brown, J.C.: Compton backscattered and primary X-rays from solar flares: angle dependent green’s function correction for photospheric albedo. A&A 446, 1157–1163 (2006). doi:10.1051/0004-6361:20053672 ADSCrossRefGoogle Scholar
  29. 29.
    Kontar, E., Brown, J.C., Emslie, A.G., et al.: Deducing electron properties from hard X-ray observations. Space Sci. Rev. (2011)Google Scholar
  30. 30.
    Krucker, S., Benz, A.O., Bastian, T.S., Acton, L.W.: X-Ray network flares of the quiet sun. ApJ 488, 499 (1997). doi:10.1086/304686 ADSCrossRefGoogle Scholar
  31. 31.
    Krucker, S., Christe, S., Glesener, L., McBride, S., Turin, P., Glaser, D., Saint-Hilaire, P., Delory, G., Lin, R.P., Gubarev, M., Ramsey, B., Terada, Y., Ishikawa, S.-N., Kokubun, M., Saito, S., Takahashi, T., Watanabe, S., Nakazawa, K., Tajima, H., Masuda, S., Minoshima, T., Shomojo, M.: The focusing optics X-ray solar imager (FOXSI). SPIE 7437, 4 (2009). doi:10.1117/12.827950 ADSGoogle Scholar
  32. 32.
    Kundu, M.R., White, S.M., Gopalswamy, N., Lim, J.: Millimeter, microwave, hard X-ray, and soft X-ray observations of energetic electron populations in solar flares. ApJS 90, 599–610 (1994). doi:10.1086/191881 ADSCrossRefGoogle Scholar
  33. 33.
    Leach, J., Petrosian, V.: The impulsive phase of solar flares. II - characteristics of the hard X-rays. ApJ 269, 715–727 (1983). doi:10.1086/161081 ADSCrossRefGoogle Scholar
  34. 34.
    Lin, R.P., Schwartz, R.A., Kane, S.R., Pelling, R.M., Hurley, K.C.: Solar hard X-ray microflares. ApJ 283, 421–425 (1984). doi:10.1086/162321 ADSCrossRefGoogle Scholar
  35. 35.
    Lin, R.P., Dennis, B.R., Hurford, G.J., Smith, D.M., Zehnder, A., Harvey, P.R., Curtis, D.W., Pankow, D., Turin, P., Bester, M., Csillaghy, A., Lewis, M., Madden, N., van Beek, H.F., Appleby, M., Raudorf, T., McTiernan, J., Ramaty, R., Schmahl, E., Schwartz, R., Krucker, S., Abiad, R., Quinn, T., Berg, P., Hashii, M., Sterling, R., Jackson, R., Pratt, R., Campbell, R.D., Malone, D., Landis, D., Barrington-Leigh, C.P., Slassi-Sennou, S., Cork, C., Clark, D., Amato, D., Orwig, L., Boyle, R., Banks, I.S., Shirey, K., Tolbert, A.K., Zarro, D., Snow, F., Thomsen, K., Henneck, R., McHedlishvili, A., Ming, P., Fivian, M., Jordan, J., Wanner, R., Crubb, J., Preble, J., Matranga, M., Benz, A., Hudson, H., Canfield, R.C., Holman, G.D., Crannell, C., Kosugi, T., Emslie, A.G., Vilmer, N., Brown, J.C., Johns-Krull, C., Aschwanden, M., Metcalf, T., Conway, A.: The reuven ramaty high-energy solar spectroscopic imager (RHESSI). Solar Phys. 210, 3–32 (2002). doi:10.1023/A:1022428818870 ADSCrossRefGoogle Scholar
  36. 36.
    Lingenfelter, R.E., Ramaty, R.: On the origin of solar flare microwave radio bursts. Plan. Spa. Sci. 15, 1303 (1967). doi:10.1016/0032-0633(67)90184-5 ADSCrossRefGoogle Scholar
  37. 37.
    Liu, C., Wang, H.: Reconnection electric field and hardness of X-Ray emission of solar flares. ApJ 696, L27–L31 (2009). doi:10.1088/0004-637X/696/1/L27 ADSCrossRefGoogle Scholar
  38. 38.
    Liu, C., Lee, J., Jing, J., Gary, D.E., Wang, H.: The spatial distribution of the hard X-Ray spectral index and the local magnetic reconnection rate. ApJ 672, L69–L72 (2008). doi:10.1086/525849 ADSCrossRefGoogle Scholar
  39. 39.
    Mackinnon, A.L.: Coulomb collisional precipitation of fast electrons in solar flares. A&A 194, 279–287 (1988)ADSGoogle Scholar
  40. 40.
    Masuda, S., Kosugi, T., Hudson, H.S.: A hard X-ray two-Ribbon flare observed with Yohkoh/HXT. Sol. Phys. 204, 55–67 (2001). doi:10.1023/A:1014230629731 ADSCrossRefGoogle Scholar
  41. 41.
    McTiernan, J.M.: RHESSI/GOES observations of the nonflaring sun from 2002 to 2006. ApJ 697, 94–99 (2009). doi:10.1088/0004-637X/697/1/94 ADSCrossRefGoogle Scholar
  42. 42.
    Murphy, R.J., Share, G.H., Grove, J.E., Johnson, W.N., Kinzer, R.L., Kurfess, J.D., Strickman, M.S., Jung, G.V.: Accelerated particle composition and energetics and ambient abundances from gamma-ray spectroscopy of the 1991 June 4 solar flare. ApJ 490, 883 (1997). doi:10.1086/304902 ADSCrossRefGoogle Scholar
  43. 43.
    Peter, H., Abbo, L., Andretta, V., Auchere, F., Bemporad, A., Berrilli, F., Bommier, V., Braukhane, A., Casini, R., Curdt, W., Davila, J., Dittus, H., Fineschi, S., Fludra, A., Gandorfer, A., Griffin, D., Inhester, B., Lagg, A., Landi Degl’Innocenti, E., Maiwald, V., Manso Sainz, R., Martinez Pillet, V., Matthews, S., Moses, D., Parenti, S., Pietarila, A., Quantius, D., Raouafi, N., Raymond, J., Rochus, P., Romberg, O., Schlotterer, M., Schuehle, U., Solanki, S., Spadaro, D., Teriaca, L., Tomczyk, S., Trujillo Bueno, J., Vial, J.: Solar magnetism eXplorer (SolmeX). ArXiv e-prints. 2011arXiv1108.5304P (2011)
  44. 44.
    Peterson, L., Winckler, J.R.: Short γ-ray burst from a solar flare. Phys. Rev. Lett 1, 205–206 (1958). doi:10.1103/PhysRevLett.1.205 ADSCrossRefGoogle Scholar
  45. 45.
    Ramaty, R., Mandzhavidze, N., Kozlovsky, B., Murphy, R.J.: Solar atmopheric abundances and energy content in flare accelerated ions from gamma-ray spectroscopy. ApJ 455, L193 (1995). doi:10.1086/309841 ADSCrossRefGoogle Scholar
  46. 46.
    Ramaty, R., Mandzhavidze, N.: Gamma-rays from solar flares. In: Martens, P.C.H., Tsuruta, S., Weber, M.A. (eds.) Highly Energetic Physical Processes and Mechanisms for Emission from Astrophysical Plasmas. IAU Symposium, vol. 195, pp. 123 (2000)Google Scholar
  47. 47.
    Raulin, J.P., Klein, K.-L.: Acceleration of electrons outside flares: evidence for coronal evolution and height-extended energy release during noise storms. A&A 281, 536 (1994)ADSGoogle Scholar
  48. 48.
    Share, G.H. Murphy, R.J.: Gamma radiation from flare-accelerated particles impacting the sun. Washington DC American Geophysical Union Geophysical Monograph Series 165, 177 (2006)ADSGoogle Scholar
  49. 49.
    Sikivie, P.: Experimental tests of the ’invisible’ axion. Phys. Rev. Lett. 51, 1415–1417 (1983). doi:10.1103/PhysRevLett.51.1415 ADSCrossRefGoogle Scholar
  50. 50.
    Silva, A.V.R., Share, G.H., Murphy, R.J., Costa, J.E.R., de Castro, C.G.G., Raulin, J.-P., Kaufmann, P.: Evidence that synchrotron emission from nonthermal electrons produces the increasing submillimeter spectral component in solar flares. Sol. Phys. 245, 311–326 (2007). doi:10.1007/s11207-007-9044-0 ADSCrossRefGoogle Scholar
  51. 51.
    Solanki, S.K., Barthol, P., Danilovic, S., Feller, A., Gandorfer, A., Hirzberger, J., Riethmüller, T.L., Schüssler, M., Bonet, J.A., Martínez Pillet, V., del Toro Iniesta, J.C., Domingo, V., Palacios, J., Knölker, M., Bello González, N., Berkefeld, T., Franz, M., Schmidt, W., Title, A.M.: SUNRISE: Instrument, mission, data, and first results. ApJ 723, L127–L133 (2010). doi:10.1088/2041-8205/723/2/L127 ADSCrossRefGoogle Scholar
  52. 52.
    Trottet, G., Vilmer, N., Barat, C., Benz, A., Magun, A., Kuznetsov, A., Sunyaev, R., Terekhov, O.: A multiwavelength analysis of an electron-dominated gamma-ray event associated with a disk solar flare. A&A 334, 1099–1111 (1998)ADSGoogle Scholar
  53. 53.
    Trottet, G.: In: Fang, C., Schmieder, B., Ding, M.D. (eds.) Third French? Chinese meeting on solar physics, 82. Nanjing Univ. Press (2006)Google Scholar
  54. 54.
    Trottet, G., Krucker, S., Lüthi, T., Magun, A.: Radio submillimeter and γ-ray observations of the 2003 october 28 solar flare. ApJ 678, 509–514 (2008). doi:10.1086/528787 ADSCrossRefGoogle Scholar
  55. 55.
    Trujillo-Bueno, J.: Spectropolarimetric investigations of the magnetization of the quiet-sun chromosphere. MmSAI 81, 681 (2010)ADSGoogle Scholar
  56. 56.
    Vilmer, N., Trottet, G., Barat, C., Schwartz, R.A., Enome, S., Kuznetsov, A., Sunyaev, R., Terekhov, O.: Hard X-ray and gamma-ray observations of an electron dominated event associated with an occulted solar flare. A&A 342, 575–582 (1999)ADSGoogle Scholar
  57. 57.
    Vilmer, N., MacKinnon, A.L., Trottet, G., Barat, C.: High energy particles accelerated during the large solar flare of 1990 May 24: X/γ-ray observations. A&A 412, 865–874 (2003). doi:10.1051/0004-6361:20031488 ADSCrossRefGoogle Scholar
  58. 58.
    Vilmer, N., MacKinnon, A.L., Hurford, G.J.: Properties of energetic ions in the solar atmosphere from γ-ray and neutron observations. Space Sci. Rev. (2011). doi:10.1007/s11214-010-9728-x Google Scholar
  59. 59.
    Vink, J.: Multiwavelength signatures of cosmic ray acceleration by young supernova remnants. In: Aharonian, F.A., Hofmann, W., Rieger, F. (eds.) American Institute of Physics Conference Series, vol. 1085, pp. 169–180. (2008)Google Scholar
  60. 60.
    Yonetoku, D., Murukami, T., Gunji, S., et al.: arXiv:1010.5305 (2010)
  61. 61.
    Zharkova, V.V., Kuznetsov, A.A., Siversky, T.V.: Diagnostics of energetic electrons with anisotropic distributions in solar flares. I. Hard X-rays bremsstrahlung emission. A&A 512, A8 (2010). doi:10.1051/0004-6361/200811486 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Sarah A. Matthews
    • 1
  • David R. Williams
    • 1
  • Karl-Ludwig Klein
    • 2
  • Eduard P. Kontar
    • 3
  • David M. Smith
    • 4
  • Andreas Lagg
    • 5
  • Sam Krucker
    • 6
    • 7
  • Gordon J. Hurford
    • 8
  • Nicole Vilmer
    • 2
  • Alexander L. MacKinnon
    • 3
  • Valentina V. Zharkova
    • 9
  • Lyndsay Fletcher
    • 3
  • Iain G. Hannah
    • 3
  • Philippa K. Browning
    • 10
  • Davina E. Innes
    • 5
  • Gerard Trottet
    • 2
  • Clare Foullon
    • 11
  • Valery M. Nakariakov
    • 11
  • Lucie M. Green
    • 1
  • Herve Lamoureux
    • 1
  • Colin Forsyth
    • 1
  • David M. Walton
    • 1
  • Mihalis Mathioudakis
    • 12
  • Achim Gandorfer
    • 5
  • Valentin Martinez-Pillet
    • 13
  • Olivier Limousin
    • 14
  • Erwin Verwichte
    • 11
  • Silvia Dalla
    • 15
  • Gottfried Mann
    • 16
  • Henri Aurass
    • 16
  • Thomas Neukirch
    • 17
  1. 1.UCL Mullard Space Science LaboratoryDorkingUK
  2. 2.LESIA, Observatoire de Paris-MeudonParisFrance
  3. 3.SUPA, School of Physics & AstronomyUniversity of GlasgowGlasgowUK
  4. 4.UC Santa CruzSanta CruzUSA
  5. 5.MPSLindauGermany
  6. 6.UC BerkeleyBerkeleyUSA
  7. 7.University of Applied Sciences, North Western Switzerland (FHNW)WindischSwitzerland
  8. 8.Space Sciences Lab. UC BerkeleyBerkeleyUSA
  9. 9.University of BradfordBradfordUK
  10. 10.University of ManchesterManchesterUK
  11. 11.University of WarwickConventryUK
  12. 12.Queen’s University BelfastBelfastUK
  13. 13.Instituto de Astrofisica de CanariasLa Laguna, TenerifeSpain
  14. 14.CEA SaclayGif-sur-YvetteFrance
  15. 15.UCLanPrestonUK
  16. 16.AIPPotsdamGermany
  17. 17.University of St. AndrewsSt. AndrewsUK

Personalised recommendations