Advertisement

Experimental Astronomy

, Volume 33, Issue 2–3, pp 305–335 | Cite as

The 2010 European Venus Explorer (EVE) mission proposal

  • Colin Frank Wilson
  • Eric Chassefière
  • Emmanuel Hinglais
  • Kevin H. Baines
  • Tibor S. Balint
  • Jean-Jacques Berthelier
  • Jacques Blamont
  • Georges Durry
  • Csaba S. Ferencz
  • Robert E. Grimm
  • Takeshi Imamura
  • Jean-Luc Josset
  • François Leblanc
  • Sebastien Lebonnois
  • Johannes J. Leitner
  • Sanjay S. Limaye
  • Bernard Marty
  • Ernesto Palomba
  • Sergei V. Pogrebenko
  • Scot C. R. Rafkin
  • Dean L. Talboys
  • Rainer Wieler
  • Liudmila V. Zasova
  • Cyrill Szopa
  • the EVE team
Original Article

Abstract

The European Venus Explorer (EVE) mission described in this paper was proposed in December 2010 to ESA as an ‘M-class’ mission under the Cosmic Vision programme. It consists of a single balloon platform floating in the middle of the main convective cloud layer of Venus at an altitude of 55 km, where temperatures and pressures are benign (∼25°C and ∼0.5 bar). The balloon float lifetime would be at least 10 Earth days, long enough to guarantee at least one full circumnavigation of the planet. This offers an ideal platform for the two main science goals of the mission: study of the current climate through detailed characterization of cloud-level atmosphere, and investigation of the formation and evolution of Venus, through careful measurement of noble gas isotopic abundances. These investigations would provide key data for comparative planetology of terrestrial planets in our solar system and beyond.

Keywords

Venus Planetary mission Cosmic vision Superpressure balloon Geochemistry Dynamics 

Notes

Acknowledgements

The EVE science team thanks the CNES and Astrium teams who worked on the mission study. We acknowledge financial support from our national funding bodies including CNES (France) and STFC (UK).

References

  1. 1.
    Andreichikov, B.M., Akhmetsin, I.K., Korchuganov, B.N., et al.: VEGA 1 and 2 X-ray radiometer analysis of the Venus cloud aerosol. Kosmich. Iss. 25, 721 (1987)ADSGoogle Scholar
  2. 2.
    Banfield, D., Dissly, R., Mischenko, M., et al.: Planetary polarization nephelometer. In: Proc. Int. Workshop ‘Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science’, Lisbon, Portugal, 6–9 October 2003 (European Space Agency Special Publication SP-544, February 2004)Google Scholar
  3. 3.
    Barabash, S., Fedorov, A., Sauvaud, J.J., et al.: The loss of ions from Venus through the plasma wake. Nature 450, 650 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Barstow, J.K., Taylor, F.W., Tsang, C.C.C., et al.: New models of the cloud structure on Venus derived from Venus Express observations. Icarus (2011). doi: 10.1016/j.icarus.2011.05.018
  5. 5.
    Barsukov, V.L., Khodakovsky, I.L., Volkov, V.P., et al.: Metal chloride and elemental sulfur condensates in the Venusian troposphere - are they possible. Proc. Lunar Planet. Sci. 12B, 1517 (1981)ADSGoogle Scholar
  6. 6.
    Basilevsky, A.T., Head, J.W., Schaber, G.G., Strom, R.G.: The resurfacing history of Venus. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (eds.) Venus II, p. 259. University of Arizona Press, Tucson (1997)Google Scholar
  7. 7.
    Chassefière, E., Korablev, O., Imamura, T., et al.: European Venus Explorer (EVE): an in-situ mission to Venus using a balloon platform. Adv. Space Res. 44, 106–115 (2009). doi: 10.1016/j.asr.2008.11.025 ADSCrossRefGoogle Scholar
  8. 8.
    Chassefière, E., Korablev, O., Imamura, T., et al.: European Venus Explorer (EVE): an in-situ mission to Venus. Exp. Astron. 23(3), 741–760 (2009). doi: 10.1007/s10686-008-9093-x ADSCrossRefGoogle Scholar
  9. 9.
    Chassefière, E., Wieler, R., Marty, B., Leblanc, F.: The evolution of Venus: present state of knowledge 1 and future exploration. Plan. Space Sci. (2011). doi: 10.1016/j.pss.2011.04.007
  10. 10.
    Cimino, J.: The composition and vertical structure of the lower cloud deck on Venus. Icarus 51, 334 (1982)ADSCrossRefGoogle Scholar
  11. 11.
    Crisp, D., Titov, D.V.: The thermal balance of the Venus atmosphere. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (eds.) Venus II, p. 259. University of Arizona Press, Tucson (1997)Google Scholar
  12. 12.
    Crumpler, L.S., Aubele, J.C., Senske, D.A., et al.: Volcanoes and centers of volcanism. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (eds.) Venus II, p. 259. University of Arizona Press, Tucson (1997)Google Scholar
  13. 13.
    Donahue, T.M., Pollak, J.B.: Origin and evolution of the atmosphere of Venus. In: Hunten, D.M., Colin, D., Donahue, T.M., Moroz, V.I. (eds.) Venus. University of Arizona Press, Tucson (1983)Google Scholar
  14. 14.
    Ferencz, O.E.L., Bodnár, C., Ferencz, D., et al.: Ducted whistlers propagating in higher-order guided mode and recorded on board of Compass-2 satellite by the advanced Signal Analyzer and Sampler 2. J. Geophys. Res. 114, A03213 (2009). doi: 10.1029/2008JA013542 CrossRefGoogle Scholar
  15. 15.
    Gillmann, C., Chassefière, E., Lognonné, P.: A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Grieger, B., Ignatiev, N.I., Hoekzema, N.M., Keller, H.U.: Indication of a near surface cloud layer on Venus from reanalysis of Venera 13/14 spectrophotometer data. In: Wilson, A. (ed.) Proceedings of the International Workshop Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science, 6–9 October 2003, Lisbon, Portugal, pp. 63–70. ESA SP-544, ESA, Noordwijk, ISBN 92–9092–855–7 (2004)Google Scholar
  17. 17.
    Grimm, G., et al.: Aerial electromagnetic sounding of the lithosphere of Venus. Icarus (2011). doi: 10.1016/j.icarus.2011.07.021
  18. 18.
    Hansen, J.E., Hovenier, J.W.: Interpretation of the polarization of Venus. J. Atmos. Sci. 31, 1137 (1974)ADSCrossRefGoogle Scholar
  19. 19.
    Hansen, J.E., Travis, L.D.: Light scattering in planetary atmospheres. Space Sci. Rev. 16, 527 (1974)ADSCrossRefGoogle Scholar
  20. 20.
    Hansen, V.L., Willis, J.J., Banerdt, W.B.: Tectonic overview and synthesis. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (eds.) Venus II, p. 259. University of Arizona Press, Tucson (1997)Google Scholar
  21. 21.
    Horn, A.B., Sully, K.: ATR-IR spectroscopic studies of the formation of sulfuric acid and sulfuric acid monohydrate films. J. Phys. Chem. Chem. Phys. 1, 3801 (1999)Google Scholar
  22. 22.
    Kasting, J.F., Pollack, J.B.: Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983)Google Scholar
  23. 23.
    Kasting, J.F.: Runaway and most greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988)ADSCrossRefGoogle Scholar
  24. 24.
    Knollenberg, R.G., Hunten, D.M.: The microphysics of the clouds of Venus: results of the pioneer Venus particle size spectrometer experiment. J. Geophys. Res. 85(A13), 8039 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    Kolodner, M.A., Steffes, P.G.: The microwave absorption and abundance of sulfuric acid vapor in the Venus atmosphere based on new laboratory measurements. Icarus 132, 151 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    Krasnopolsky, V.A.: Chemical composition of Venus atmosphere and clouds: some unsolved problems. Planet. Space Sci. 54, 1352–1359 (2006). doi: 10.1016/j.pss.2006.04.019 ADSCrossRefGoogle Scholar
  27. 27.
    Lécuyer, C., Simon, L., Guyot, F.: Comparison of carbon, nitrogen and water budgets on Venus and the Earth. Earth Planet. Sci. Lett. 181, 33–40 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    Limaye, S.S.: Venus atmospheric circulation: known and unknown. J. Geophys. Res. 112, E04S09 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    Linkin, V.M., Kerzhanovich, V.V., Lipatov, A.N., et al.: Vega balloon dynamics and vertical winds in the Venus middle cloud region. Science 231(4744), 1417–1419 (1986). doi: 10.1126/science.231.4744.1417 ADSCrossRefGoogle Scholar
  30. 30.
    Rasool, S.I., de Bergh, C.: The runaway greenhouse and accumulation of CO2 in the Venus atmosphere. Nature 226, 1037–1039 (1970)ADSCrossRefGoogle Scholar
  31. 31.
    Sagdeev, R.Z., Linkin, V.M., Blamont, J.E., Preston, R.A.: The VEGA balloon experiment. Science 231(4744), 1411–1414. (1986). doi: 10.1126/science.231.4744.1407 ADSCrossRefGoogle Scholar
  32. 32.
    Shimazu, Y., Urabe, T.: An energetic study of the evolution of the terrestrial and cytherean atmospheres. Icarus 9, 498–506 (1968)ADSCrossRefGoogle Scholar
  33. 33.
    Smrekar, S.E., et al.: Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 5978, 605 (2010)CrossRefGoogle Scholar
  34. 34.
    Surkov, I.A., et al.: Exploration of Terrestrial Planets from Spacecraft. Wiley-Praxis, Chichester (1997)Google Scholar
  35. 35.
    Tellmann, S., et al.: Structure of the Venus neutral atmosphere as observed by the radio science experiment VeRa on Venus Express. J. Geophys. Res. 114, E00B36 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Titov, D.V., et al.: Radiation in the atmosphere of Venus. AGU Geophys. Monogr. 176, 121 (2007)CrossRefGoogle Scholar
  37. 37.
    Hunter, J., Sacks, W.R., Block, B.P., et al.: The Mars analytical chemistry experiment. In: 2005 IEEE Aerospace Conference (2005). doi: 10.1109/AERO.2005.1559352
  38. 38.
    Wilquet, V., et al.: Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid-IR onboard Venus Express. J. Geophys. Res. 114, E00B42 (2009)ADSCrossRefGoogle Scholar
  39. 39.
    Zahnle, K.: Earth after the Moon-forming impact. Geochim. Cosmochim. Acta 70(18), A729–A729 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Colin Frank Wilson
    • 1
  • Eric Chassefière
    • 2
  • Emmanuel Hinglais
    • 3
  • Kevin H. Baines
    • 4
    • 5
  • Tibor S. Balint
    • 4
  • Jean-Jacques Berthelier
    • 6
  • Jacques Blamont
    • 7
  • Georges Durry
    • 8
  • Csaba S. Ferencz
    • 9
  • Robert E. Grimm
    • 10
  • Takeshi Imamura
    • 11
  • Jean-Luc Josset
    • 12
  • François Leblanc
    • 6
  • Sebastien Lebonnois
    • 13
  • Johannes J. Leitner
    • 14
  • Sanjay S. Limaye
    • 5
  • Bernard Marty
    • 15
  • Ernesto Palomba
    • 16
  • Sergei V. Pogrebenko
    • 17
  • Scot C. R. Rafkin
    • 10
  • Dean L. Talboys
    • 18
  • Rainer Wieler
    • 19
  • Liudmila V. Zasova
    • 20
  • Cyrill Szopa
    • 6
  • the EVE team
  1. 1.Department of PhysicsOxford UniversityOxfordUK
  2. 2.IDESUniversité de Paris-Sud 11OrsayFrance
  3. 3.CNES (PASO)ToulouseFrance
  4. 4.NASA/JPLPasadenaUSA
  5. 5.SSECUniversity of WisconsinMadisonUSA
  6. 6.LATMOS, IPSLCNRSGuyancourtFrance
  7. 7.CNESParisFrance
  8. 8.Université de ReimsReimsFrance
  9. 9.Space Research GroupEötvös UniversityBudapestHungary
  10. 10.Southwest Research InstituteBoulderUSA
  11. 11.ISAS/JAXASagamiharaJapan
  12. 12.Space Exploration InstituteNeuchâtelSwitzerland
  13. 13.Laboratoire de Météorologie Dynamique, IPSL, UPMCCNRSParisFrance
  14. 14.Institute of AstronomyUniversity of ViennaViennaAustria
  15. 15.CRPGEcole Nationale Supérieure de GéologieNancyFrance
  16. 16.INAF-IFSIRomeItaly
  17. 17.Joint Institute for VLBI in EuropeDwingelooThe Netherlands
  18. 18.Space Research CentreUniversity of LeicesterLeicesterUK
  19. 19.Institute of Geochemistry and PetrologyETHZürichSwitzerland
  20. 20.Space Research InstituteMoscowRussia

Personalised recommendations