Advertisement

Experimental Astronomy

, Volume 34, Issue 2, pp 551–582 | Cite as

GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

  • Jochen Greiner
  • Karl Mannheim
  • Felix Aharonian
  • Marco Ajello
  • Lajos G. Balasz
  • Guido Barbiellini
  • Ronaldo Bellazzini
  • Shawn Bishop
  • Gennady S. Bisnovatij-Kogan
  • Steven Boggs
  • Andrej Bykov
  • Guido DiCocco
  • Roland Diehl
  • Dominik Elsässer
  • Suzanne Foley
  • Claes Fransson
  • Neil Gehrels
  • Lorraine Hanlon
  • Dieter Hartmann
  • Wim Hermsen
  • Wolfgang Hillebrandt
  • Rene Hudec
  • Anatoli Iyudin
  • Jordi Jose
  • Matthias Kadler
  • Gottfried Kanbach
  • Wlodek Klamra
  • Jürgen Kiener
  • Sylvio Klose
  • Ingo Kreykenbohm
  • Lucien M. Kuiper
  • Nikos Kylafis
  • Claudio Labanti
  • Karlheinz Langanke
  • Norbert Langer
  • Stefan Larsson
  • Bruno Leibundgut
  • Uwe Laux
  • Francesco Longo
  • Kei’ichi Maeda
  • Radoslaw Marcinkowski
  • Martino Marisaldi
  • Brian McBreen
  • Sheila McBreen
  • Attila Meszaros
  • Ken’ichi Nomoto
  • Mark Pearce
  • Asaf Peer
  • Elena Pian
  • Nikolas Prantzos
  • Georg Raffelt
  • Olaf Reimer
  • Wolfgang Rhode
  • Felix Ryde
  • Christian Schmidt
  • Joe Silk
  • Boris M. Shustov
  • Andrew Strong
  • Nial Tanvir
  • Friedrich-Karl Thielemann
  • Omar Tibolla
  • David Tierney
  • Joachim Trümper
  • Dmitry A. Varshalovich
  • Jörn Wilms
  • Grzegorz Wrochna
  • Andrzej Zdziarski
  • Andreas Zoglauer
Original Article

Abstract

We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range (COMPTEL, INTEGRAL; see Fig. 1). These gamma-ray observations will be complemented by observations in the soft X-ray and (near-)infrared region with the corresponding telescopes placed on a separate satellite. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (“GRIPS”) mission with its three instruments Gamma-Ray Monitor (GRM), X-Ray Monitor (XRM) and InfraRed Telescope (IRT) addresses fundamental questions in ESA’s Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate γ-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.

Keywords

Compton and Pair creation telescope Gamma-ray bursts Nucleosynthesis Early Universe 

References

  1. 1.
    Abdo, A.A., et al.: Detection of the energetic pulsar PSR B1509-58 and its pulsar wind nebula in MSH 15-52 using the Fermi-large area telescope. Astrophys. J. 714, 927 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Abdo, A.A., Ackermann, M., Ajello, M., et al.: The first catalog of active galactic nuclei detected by the Fermi large area telescope. Astrophys. J. 715, 429 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Abdo, A.A., Ackermann, M., Ajello, M., et al.: Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni. Science 329, 817 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    Abdo, A.A., et al.: The first Fermi large area telescope catalog of gamma-ray pulsars. Astrophys. J. Suppl. 187, 460 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    Ajello, M., Greiner, J., et al.: BAT X-ray survey. I. Methodology and X-ray identification. Astrophys. J. 678, 102 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Bai, X.-N., Spitkovsky, A.: Uncertainties of modeling gamma-ray pulsar light curves using vacuum dipole magnetic field. Astrophys. J. 715, 1270 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Bai, X.-N., Spitkovsky, A.: Modeling of gamma-ray pulsar light curves using the force-free magnetic field. Astrophys. J. 715, 1282 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Boggs, S.E.: Boggs: the advanced Compton telescope mission. New Astron. Rev. 50, 604 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Böttcher, M., Reimer, A., Marscher, A.P.: Implications of the very high energy gamma-ray detection of the quasar 3C279. Astrophys. J. 703, 1168 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Bouchet, L., Roques, J.P., Jourdain, E.: On the morphology of the electron-positron annihilation emission as seen by SPI/INTEGRAL. Astrophys. J. 720, 1772 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Bromm, V., Loeb, A.: High-redshift gamma-ray bursts from population III progenitors. Astrophys. J. 642, 382 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Caccia, S., Bertucci, G., Maiocchi, D., et al.: A mixed-signal spectroscopic-grade and high-functionality CMOS readout cell for semiconductor X-/γ-ray pixel detectors. IEEE Trans. Nucl. Sci. 55, 2721 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    Chupp, E.L., Ryan, J.M.: High energy neutron and pion-decay gamma-ray emissions from solar flares. Res. Astron. Astrophys. 9, 11 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Cline, J.M., Frey, A.R., Chen, F.: Metastable dark matter mechanisms for INTEGRAL 511 keV γ rays and DAMA/CoGeNT events. Phys. Rev. D83, 083511 (2011)ADSGoogle Scholar
  15. 15.
    de Jager, O.C., Slane, P.O., LaMassa, S.: Probing the radio to X-ray connection of the Vela X pulsar wind nebula with Fermi LAT and H.E.S.S. Astrophys. J. 689, L125 (2008)CrossRefGoogle Scholar
  16. 16.
    Gal-Yam, A., Mazzali, P., Ofek, E. O., et al.: Gal-Yam: supernova 2007bi as a pair-instability explosion. Nature 462, 624 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Gehrels, N., Chincarini, G., Giommi, P., et al.: The swift gamma-ray burst mission. Astrophys. J. 611, 1005 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Greiner, J., Bornemann, W., Clemens, C., et al.: GROND—a 7-channel imager. Publ. Astron. Soc. Pac. 120, 405 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Greiner, J., Iyudin, A., Kanbach, G., et al.: Gamma-ray burst investigation via polarimetry and spectroscopy (GRIPS). Exp. Astron. 23, 91 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Greiner, J., Krühler, T., Klose, S., et al.: The nature of ‘dark’ gamma-ray bursts. Astron. Astrophys. 526, A30 (2010)CrossRefGoogle Scholar
  21. 21.
    Hammer, N.J., Janka, H., Müller, E.: Three-dimensional simulations of mixing instabilities in supernova explosions. Astrophys. J. 714, 1371 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Hooper, D., Ferrer, F., Boehm, C., et al.: Possible evidence for MeV dark matter in dwarf spheroidals. Phys. Rev. Lett. 93, 1302 (2004)CrossRefGoogle Scholar
  23. 23.
    Iyudin, A.F., Galkin, V.I., Dzhatdoev, T.A.: The possibility of observing resonance gamma-ray absorption in the spectra of active galactic nuclei. Astron. Rep. 53, 102 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Kuiper, L., et al.: COMPTEL detection of pulsed gamma-ray emission from PSR B1509-58 up to at least 10 MeV. Astron. Astrophys. 351, 119 (1999)MathSciNetADSGoogle Scholar
  25. 25.
    Kuiper, L., et al.: Hard X-ray timing and spectral characteristics of the energetic pulsar PSR J0205+6449 in supernova remnant 3C 58. An RXTE PCA/HEXTE and XMM-Newton view on the 0.5–250 keV band. Astron. Astrophys. 515, A34 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    Kuiper, L., Hermsen, W.: High-energy characteristics of the schizophrenic pulsar PSR J1846-025 in Kes 75. Multi-year RXTE and INTEGRAL observations crossing the magnetar-like outburst. Astron. Astrophys. 501, 1031 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Kuiper, L., Hermsen, W., den Hartog, P.R., Collmar, W.: Discovery of luminous pulsed hard X-ray emission from anomalous X-ray pulsars 1RXS J1708-4009, 4U 0142+61, and 1E 2259+586 by INTEGRAL and RXTE. Astrophys. J. 645, 556 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    Krühler, T., Schady, P., Greiner, J., et al.: Photometric redshifts for gamma-ray burst afterglows from GROND and Swift/UVOT. Astron. Astrophys. 526, A153 (2010)CrossRefGoogle Scholar
  29. 29.
    Langer, N., Norman, C.A., de Koter, A., Vink, J.S., Cantiello, M., Yoon, S.-C.: Pair creation supernovae at low and high redshift. Astron. Astrophys. 475, L19 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Limongi, M., Chieffi, A.: The Nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120 Msolar: the hydrostatic and explosive contributions. Astrophys. J. 647, 483 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Marion, G.H., Höflich, P., Vacca, W.D., Wheeler, J.C.: Near-infrared spectra of type Ia supernovae. Astrophys. J. 591, 316 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    Naoz, S., Bromberg, O.: Naoz & Bromberg: an observational limit on the earliest gamma-ray bursts. Mon. Not. R. Astron. Soc. 380, 757 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    Paciesas, W.S., Meegan, C.A., Pendleton, G.N., et al.: The fourth BATSE gamma-ray burst catalog. Astrophys. J. Suppl. 122, 465 (1999)ADSCrossRefGoogle Scholar
  34. 34.
    Petrosian, V., Jiang, Y.W., Liu, S., Ho, G.C., Mason, G.M.: Relative distributions of fluences of 3He and 4He in solar energetic particles. Astrophys. J. 701, 1 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Pilia, M., et al.: AGILE observations of the “Soft” gamma-ray pulsar PSR B1509-58. Astrophys. J. 723, 707 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Prantzos, N., Boehm, C., Bykov, A.M., et al.: Prantzos: the 511 keV emission from positron annihilation in the galaxy. Rev. Mod. Phys. arXiv:1009.4620 (2011, in press)
  37. 37.
    Predehl, P., Andritschke, R., Böhringer, H., et al.: eROSITA on SRG. SPIE 7732E, 23 (2010)ADSGoogle Scholar
  38. 38.
    Ramaty, R.: Interstellar gamma-ray lines from low energy cosmic ray interactions. Astron. Astrophys. Suppl. 120, 373 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    Romani, R.W., Watters, K.P.: Constraining pulsar magnetosphere geometry with γ-ray light curves. Astrophys. J. 714, 810 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    Salvaterra, R., Della Valle, M., Campana, S., et al.: GRB090423 at a redshift of z~8.1. Nature 461, 1258 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Sim, S.A., Mazzali, P.A.: On the γ-ray emission of type Ia supernovae. Mon. Not. R. Astron. Soc. 385, 1681 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    Summa, A., Elsässer, D., Mannheim, K.: Nuclear de-excitation line spectrum of Cassiopeia A. Astron. Astrophys. 533, A13 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Tanvir, N.R., Fox, D.B., Levan, A.J., et al.: A γ-ray burst at a redshift of z~8.2. Nature 461, 1254 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    Tibolla, O., Mannheim, K., Paravac, A., Greiner, J., Kanbach, G.: GRIPS and its strong connections to the GeV and TeV bands. In: Proc. of “Gamma-ray Astrophysics in the Multimessenger Context”. Il Nuovo Cim. C 034(3), 41 (2011)Google Scholar
  45. 45.
    Watters, K.P., Romani, R.W., Weltevrede, P., Johnston, S.: An atlas for interpreting γ-ray pulsar light curves. Astrophys. J. 695, 1289 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    Zoglauer, A.: First light for the next generation of Compton and Pair telescopes. PhD thesis, TU Munich (2006)Google Scholar
  47. 47.
    Zoglauer, A., Andritschke, R., Schopper, F.: MEGAlib the medium energy gamma-ray astronomy library. New Astron. Rev. 50(7–8), 629 (2006)ADSGoogle Scholar
  48. 48.
    Zoglauer, A., Andritschke, R., Boggs, S., et al.: MEGAlib: simulation and data analysis for low-to-medium-energy gamma-ray telescopes. SPIE 7011E, 101 (2008)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jochen Greiner
    • 1
  • Karl Mannheim
    • 2
  • Felix Aharonian
  • Marco Ajello
  • Lajos G. Balasz
  • Guido Barbiellini
  • Ronaldo Bellazzini
  • Shawn Bishop
  • Gennady S. Bisnovatij-Kogan
  • Steven Boggs
  • Andrej Bykov
  • Guido DiCocco
  • Roland Diehl
  • Dominik Elsässer
  • Suzanne Foley
  • Claes Fransson
  • Neil Gehrels
  • Lorraine Hanlon
  • Dieter Hartmann
  • Wim Hermsen
  • Wolfgang Hillebrandt
  • Rene Hudec
  • Anatoli Iyudin
  • Jordi Jose
  • Matthias Kadler
  • Gottfried Kanbach
  • Wlodek Klamra
  • Jürgen Kiener
  • Sylvio Klose
  • Ingo Kreykenbohm
  • Lucien M. Kuiper
  • Nikos Kylafis
  • Claudio Labanti
  • Karlheinz Langanke
  • Norbert Langer
  • Stefan Larsson
  • Bruno Leibundgut
  • Uwe Laux
  • Francesco Longo
  • Kei’ichi Maeda
  • Radoslaw Marcinkowski
  • Martino Marisaldi
  • Brian McBreen
  • Sheila McBreen
  • Attila Meszaros
  • Ken’ichi Nomoto
  • Mark Pearce
  • Asaf Peer
  • Elena Pian
  • Nikolas Prantzos
  • Georg Raffelt
  • Olaf Reimer
  • Wolfgang Rhode
  • Felix Ryde
  • Christian Schmidt
  • Joe Silk
  • Boris M. Shustov
  • Andrew Strong
  • Nial Tanvir
  • Friedrich-Karl Thielemann
  • Omar Tibolla
  • David Tierney
  • Joachim Trümper
  • Dmitry A. Varshalovich
  • Jörn Wilms
  • Grzegorz Wrochna
  • Andrzej Zdziarski
  • Andreas Zoglauer
  1. 1.MPI für extraterrestrische PhysikGarchingGermany
  2. 2.Inst. f. Theor. Physik & AstrophysikUniv. WürzburgWürzburgGermany

Personalised recommendations