Experimental Astronomy

, Volume 33, Issue 2–3, pp 753–791 | Cite as

Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets

  • Christopher S. Arridge
  • Craig B. Agnor
  • Nicolas André
  • Kevin H. Baines
  • Leigh N. Fletcher
  • Daniel Gautier
  • Mark D. Hofstadter
  • Geraint H. Jones
  • Laurent Lamy
  • Yves Langevin
  • Olivier Mousis
  • Nadine Nettelmann
  • Christopher T. Russell
  • Tom Stallard
  • Matthew S. Tiscareno
  • Gabriel Tobie
  • Andrew Bacon
  • Chris Chaloner
  • Michael Guest
  • Steve Kemble
  • Lisa Peacocke
  • Nicholas Achilleos
  • Thomas P. Andert
  • Don Banfield
  • Stas Barabash
  • Mathieu Barthelemy
  • Cesar Bertucci
  • Pontus Brandt
  • Baptiste Cecconi
  • Supriya Chakrabarti
  • Andy F. Cheng
  • Ulrich Christensen
  • Apostolos Christou
  • Andrew J. Coates
  • Glyn Collinson
  • John F. Cooper
  • Regis Courtin
  • Michele K. Dougherty
  • Robert W. Ebert
  • Marta Entradas
  • Andrew N. Fazakerley
  • Jonathan J. Fortney
  • Marina Galand
  • Jaques Gustin
  • Matthew Hedman
  • Ravit Helled
  • Pierre Henri
  • Sebastien Hess
  • Richard Holme
  • Özgur Karatekin
  • Norbert Krupp
  • Jared Leisner
  • Javier Martin-Torres
  • Adam Masters
  • Henrik Melin
  • Steve Miller
  • Ingo Müller-Wodarg
  • Benoît Noyelles
  • Chris Paranicas
  • Imke de Pater
  • Martin Pätzold
  • Renée Prangé
  • Eric Quémerais
  • Elias Roussos
  • Abigail M. Rymer
  • Agustin Sánchez-Lavega
  • Joachim Saur
  • Kunio M. Sayanagi
  • Paul Schenk
  • Gerald Schubert
  • Nick Sergis
  • Frank Sohl
  • Edward C. SittlerJr.
  • Nick A. Teanby
  • Silvia Tellmann
  • Elizabeth P. Turtle
  • Sandrine Vinatier
  • Jan-Erik Wahlund
  • Philippe Zarka
Original Article

Abstract

The “Ice Giants” Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA’s Cosmic Vision 2015–2025. UP was proposed to the European Space Agency’s M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz–Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036–2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.

Keywords

Uranus Ice Giant Orbiter Giant planet atmosphere Ring system Interior Dynamo Magnetosphere Natural satellite 

Notes

Acknowledgements

CSA was supported by a Science and Technology Facilities Council Postdoctoral Fellowship. LNF was supported by a Glasstone Fellowship at the University of Oxford. We wish to thank EADS Astrium and Systems Engineering and Assessment Ltd. for their assistance with this study.

References

  1. 1.
    Ballester, G.E.: Magneotspheric interactions in the major planets. In: Wamsteker, W., Gonzalez Riestra, R. (eds.) Ultraviolet Astrophysics Beyond the IUE Final Archive, Proceedings of the Conference held in Sevilla, Spain, from 11–14 November 1997, ESA SP, vol. 413, p. 21. ESA Publications Division (1998)Google Scholar
  2. 2.
    Behannon, K.W., Lepping, R.P., Sittler Jr., E.C., Ness, N.F., Mauk, B.H.: The magnetotail of Uranus. J. Geophys. Res. 92(A13), 15354–15366 (1987). doi:10.1029/JA092iA13p15354 ADSCrossRefGoogle Scholar
  3. 3.
    Belton, M.J.S., et al.: New Frontiers in the Solar System: An Integrated Exploration Strategy. Solar System Exploration Survey Space Studies Board, National Research Council. The National Academies Press, Washington, D.C.. (2003) ISBN: 0-309-50836-3Google Scholar
  4. 4.
    Bergstralh, J.T., Miner, E.D., Matthews, M.S. (eds.): Uranus. University of Arizona Space Science Series. University of Arizona Press. (1991) ISBN: 978-0816512089Google Scholar
  5. 5.
    Boué, G., Laskar, J.: A collisionless scenario for Uranus tilting. Astrophys. J. 712, L44 (2010). doi:10.1088/2041-8205/712/1/L44 ADSCrossRefGoogle Scholar
  6. 6.
    Capone, L.A., Whitten, R.C., Prasad, S.S., Dubach, J.: The ionospheres of Saturn, Uranus, and Neptune. Astrophys. J. 215, 977–983 (1977). doi:10.1086/155434 ADSCrossRefGoogle Scholar
  7. 7.
    Chandler, M.O., Waite, J.H.: The ionosphere of Uranus—a myriad of possibilities. Geophys. Res. Lett. 13, 6–9 (1986). doi:10.1029/GL013i001p00006 ADSCrossRefGoogle Scholar
  8. 8.
    Christensen, U.R., Tilgner, A.: Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429(6988), 169–171 (2004). doi:10.1038/nature02508 ADSCrossRefGoogle Scholar
  9. 9.
    Crida, A.: Minimum mass solar nebulae and planetary migration. Astrophys. J. 698, 606–614 (2009). doi:10.1088/0004-637X/698/1/606 ADSCrossRefGoogle Scholar
  10. 10.
    Croft, S.K., Soderblom, L.A.: Geology of the Uranian satellites. In: Bergstrahl, J.T., Miner, E.D., Matthews, M.S. (eds.) Uranus, pp. 561–628. University of Arizona Press, Tucson (1991)Google Scholar
  11. 11.
    de Pater, I., Hammel, H.B., Gibbard, S.G., Showalter, M.R.: New dust belts of Uranus: one ring, two ring, red ring, blue ring. Science 312(5770), 92–94 (2006). doi:10.1126/science.1125110 ADSCrossRefGoogle Scholar
  12. 12.
    de Pater, I., Hammel, H.B., Showalter, M.R., van Dam, M.A.: The dark side of the rings of Uranus. Science 317(5846), 1888 (2007). doi:10.1126/science.1148103 ADSCrossRefGoogle Scholar
  13. 13.
    Delsanti, A., Jewitt, D.: The solar system beyond the planets. In: Blondel, Ph., Mason, J. (eds.) Solar System Update, pp. 267–294. Springer, Germany (2006)CrossRefGoogle Scholar
  14. 14.
    Desch, M.D., Connerney, J.E.P., Kaiser, M.L.: The rotation period of Uranus. Nature 322, 42–43 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    Desch, M.D., Kaiser, M.L., Zarka, P., Lecacheux, A., Leblanc, Y., Aubier, M., Ortega-Molina, A.: Uranus as a radio source. In: Bergstrahl, J.T., Miner, E.D., Matthews, M.S. (eds.) Uranus. University of Arizona Press, Tucson (1991)Google Scholar
  16. 16.
    Duncan, M.J., Lissauer, J.J.: Orbital stability of the uranian satellite system. Icarus 125(1), 1–12 (1997). doi:10.1006/icar.1996.5568 ADSCrossRefGoogle Scholar
  17. 17.
    Elliot, J.L., Nicholson, P.D.: The rings of Uranus. In: Brahic, A., Greenberg, R. (eds.) Planetary Rings. University of Arizona Press, Tucson (1984)Google Scholar
  18. 18.
    Ferri, P., Denis, M.: Utilising Rosetta commonality to reduce mission operations cost for Mars Express. Acta Astronaut. 52(2–6), 353–359 (2003). doi:10.1016/S0094-5765(02)00175-3 ADSCrossRefGoogle Scholar
  19. 19.
    Fortney, J., Nettelmann, N.: The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152(1–4), 423–447 (2010). doi:10.1007/s11214-009-9582-x ADSCrossRefGoogle Scholar
  20. 20.
    Fortney, J.J., Ikoma, M., Nettelmann, N., Guillot, T., Marley, M.S.: Self-consistent model atmospheres and the cooling of the solar system’s giant planets. Astrophys. J. 729, 32 (2011). doi:10.1088/0004-637X/729/1/32 ADSCrossRefGoogle Scholar
  21. 21.
    Fountain, G.H., Kusnierkiewicz, D.Y., Hersman, C.B., Herder, T.S., Coughlin, T.B., Gibson, W.C., Clancy, D.A., DeBoy, C.C., Hill, T.A., Kinnison, J.D., Mehoke, D.S., Ottman, G.K., Rogers, G.D., Stern, S.A., Stratton, J.M., Vernon, S.R., Williams, S.P.: The New Horizons spacecraft. Space Sci. Rev. 140, 23–47 (2008). doi:10.1007/s11214-008-9374-8 ADSCrossRefGoogle Scholar
  22. 22.
    French, et al.: Dynamics and structure of the uranian rings. In: Bergstrahl, J.T., Miner, E.D., Matthews, M.S. (eds.) Uranus, pp. 327–409. University of Arizona Press, Tucson (1991)Google Scholar
  23. 23.
    Geissler, P.E., Greenberg, R., Hoppa, G., et al.: Evidence for non-synchronous rotation of Europa. Nature 391, 368 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Gimenez, A., Lebreton, J.-P., Svedhem, H., Tauber, J.: Studies on the re-use of the Mars Express platform. ESA Bull. 109, 78–86 (2002)ADSGoogle Scholar
  25. 25.
    Gladman, B., Quinn, D.D., Nicholson, P., Rand, R.: Synchronous locking of tidally evolving satellites. Icarus 122(1), 166–192 (1996). doi:10.1006/icar.1996.0117 ADSCrossRefGoogle Scholar
  26. 26.
    Glassmeier, K.-H., Boehnhardt, H., Koschny, D., Kürt, E., Richter, I.: The Rosetta mission: flying towards the origin of the solar system. Space Sci. Rev. 128, 1–21 (2007). doi:10.1007/s11214-006-9140-8 ADSCrossRefGoogle Scholar
  27. 27.
    Guillot, T.: The interiors of giant planets: models and outstanding question. Ann. Rev. Earth Planet. Sci. 33, 493–530 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    Hammel, H.B., Sromovsky, L.A., Fry, P.M., Rages, K., Showalter, M., de Pater, I., van Dam, M.A., Lebeau, R.P., Deng, X.: The dark spot in the atmosphere of Uranus in 2006: discovery, description, and dynamical simulations. Icarus 201(1), 257–271 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Hansen, C.J., Aljabri, A.S., Banfield, D., Bierhaus, E.B., Brown, M., Colwell, J.E., Dougherty, M., Hendrix, A.R., Ingersoll, A., Khurana, K., Landau, D., McEwen, A., Paige, D.A., Paranicas, C., Satter, C.M., Schmidt, B., Showalter, M., Spilker, L.J., Spilker, T., Stansberry, J., Strange, N., Tiscareno, M.: Neptune science with Argo—a voyage through the outer solar system. White paper submitted to the 2013–2022 Planetary Decadal Survey. http://www8.nationalacademies.org/ssbsurvey/DetailFileDisplay.aspx?id=37&parm_type=PSDS (2011). Accessed 20 July 2011
  30. 30.
    Helled, R., Anderson, J.D., Schubert, G.: Uranus and Neptune: shape and rotation. Icarus 210(1), 446–454 (2010). doi:10.1016/j.icarus.2010.06.037 ADSCrossRefGoogle Scholar
  31. 31.
    Herbert, F.: Aurora and magnetic field of Uranus. J. Geophys. Res. 114, A11206 (2009). doi:10.1029/2009JA014394 CrossRefGoogle Scholar
  32. 32.
    Herbert, F., Sandel, B.R.: The uranian aurora and its relationship to the magnetosphere. J. Geophys. Res. 99(A3), 4143–4160 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    Holme, R., Bloxham, J.: The magnetic fields of Uranus and Neptune: methods and models. J. Geophys. Res. 101(E1), 2177–2200 (1996). doi:10.1029/95JE03437 ADSCrossRefGoogle Scholar
  34. 34.
    Hubbard, W.R., et al.: Ice giants decadal study. http://sites.nationalacademies.org/SSB/SSB_059331(2010). Retrieved 7 October 2010
  35. 35.
    Hussmann, H., Sohl, F., Spohn, T.: Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185(1), 258–273 (2006). doi:10.1016/j.icarus.2006.06.005 ADSCrossRefGoogle Scholar
  36. 36.
    Jacobson, R.A., Campbell, J.K., Taylor, A.H., Synnott, S.P.: The masses of Uranus and its major satellites from Voyager tracking data and Earth-based uranian satellite data. Astron. J. 103(6), 2068–2078 (1992)ADSCrossRefGoogle Scholar
  37. 37.
    Lorenz, R.D., Stiles, B.W., Kirk, R.L. et al.: Titan’s rotation reveals an internal ocean and changing zonal winds. Science 1649–1651 (2008)Google Scholar
  38. 38.
    Majeed, T., Waite, J.H., Bougher, S.W., Yelle, R.V., Gladstone, G.R., McConnell, J.C., Bhardwaj, A.: The ionospheres–thermospheres of the giant planets. Adv. Space Res. 33(2), 197–211 (2004). doi:10.1016/j.asr.2003.05.009 ADSCrossRefGoogle Scholar
  39. 39.
    Melin, H., Stallard, T., Miller, S., Trafton, L.M., Encrenaz, Th, Geballe, T.R.: Seasonal variability in the ionosphere of Uranus. Astrophys. J. 729, 134 (2011). doi:10.1088/0004-637X/729/2/134 ADSCrossRefGoogle Scholar
  40. 40.
    Murray, C.D., Thompson, R.P.: Orbits of shepherd satellites deduced from the structure of the rings of Uranus. Nature 348, 499–502 (1990). doi:10.1038/348499a0 ADSCrossRefGoogle Scholar
  41. 41.
    Ness, N.F., Connerney, J.E.P., Lepping, R.P., Schulz, M., Voigt, G.-H.: The magnetic field and magnetospheric configuration of Uranus. In: Bergstrahl, J.T., Miner, E.D., Matthews, M.S. (eds.) Uranus, pp. 739–779. University of Arizona Press, Tucson (1991)Google Scholar
  42. 42.
    Peale, S.J., Phillips, R.J., Solomon, S.C., Smith, D.E., Zuber, M.T.: A procedure for determining the nature of Mercury’s core. Meteorit. Planet. Sci. 37, 1269–1283 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    Pearl, J.C., Conrath, B.J., Hanel, R.A., Pirraglia, J.A.: The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data. Icarus 84, 12–28 (1990). doi:10.1016/0019-1035(90)90155-3 ADSCrossRefGoogle Scholar
  44. 44.
    Plescia, J.B.: Cratering history of the Uranian satellites—Umbriel, Titania, and Oberon. J. Geophys. Res. 92, 14918–14932 (1987). doi:10.1029/JA092iA13p14918 ADSCrossRefGoogle Scholar
  45. 45.
    Saumon, D., Guillot, T.: Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys. J. 609(2), 1170–1180 (2004). doi:10.1086/421257 ADSCrossRefGoogle Scholar
  46. 46.
    Saur, J., Neubauer, F.M., Glassmeier, K.-H.: Induced magnetic fields in solar system bodies. Space Sci. Rev. 152, 391–421 (2010). doi:10.1007/s11214-009-9581-y ADSCrossRefGoogle Scholar
  47. 47.
    Sayanagi, K.M., Showman, A.P., Dowling, T.E.: The emergence of multiple robust zonal jets from freely evolving, three-dimensional stratified geostrophic turbulence with applications to Jupiter. J. Atmos. Sci. 65(12), 3947 (2008). doi:10.1175/2008JAS2558.1 ADSCrossRefGoogle Scholar
  48. 48.
    Seidelmann, P.K., Archinal, B.A., A’hearn, M.F., Conrad, A., Consolmagno, G.J., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Obsert, J., Stooke, P., Tedesco, E.F., Tholen, D.J., Thomas, P.C., Williams, I.P.: Report of the IAU/IAG working group on cartographic coordinates and rotational elements: 2006. Celest. Mech. Dyn. Astr. 98, 155–180 (2007). doi:10.1007/s10569-007-9072-y ADSMATHCrossRefGoogle Scholar
  49. 49.
    Selesnick, R.S., Richardson, J.D.: Plasmasphere formation in arbitrarily oriented magnetospheres. Geophys. Res. Lett. 13, 624–627 (1986). doi:10.1029/GL013i007p00624 ADSCrossRefGoogle Scholar
  50. 50.
    Showalter, M., Lissauer, J.: The second ring–moon system of Uranus: discovery and dynamics. Science 311(5763), 973–977 (2006). doi:10.1126/science.1122882 ADSCrossRefGoogle Scholar
  51. 51.
    Showalter, M.R., Lissauer, J.J., French, R.G., Hamilton, D.P., Nicholson, P.D., de Pater, I., Dason, R.: HST observations of the uranian outer ring-moon system. Bull.-Am. Astron. Soc. 40, 431 (2008)ADSGoogle Scholar
  52. 52.
    Showman, A.P.: Numerical simulations of forced shallow-water turbulence: effects of moist convection on the large-scale circulation of Jupiter and Saturn. J. Atmos. Sci. 64, 3132–3157 (2007)ADSCrossRefGoogle Scholar
  53. 53.
    Sittler Jr., E.C., Ogilvie, K.W., Selesnick, R.: Survey of electrons in the Uranian magnetosphere: Voyager 2 observations. J. Geophys. Res. 92, 15263 (1987)ADSCrossRefGoogle Scholar
  54. 54.
    Squyres, S., et al.: Vision and Voyages for Planetary Science in the Decade 2013–2022. Committee on the Planetary Science Decadal Survey; National Research Council. Published by The National Academies Press, Washington, D.C.. ISBN: 0-309-20955-2. Pre-publication version (2011)Google Scholar
  55. 55.
    Stanley, S., Bloxham, J.: Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428(6979), 151–153 (2004). doi:10.1038/nature02376 ADSCrossRefGoogle Scholar
  56. 56.
    Stanley, S., Bloxham, J.: Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus 184(2), 556–572 (2006). doi:10.1016/j.icarus.2006.05.005 ADSCrossRefGoogle Scholar
  57. 57.
    Stone, E.C., Cooper, J.F., Cummings, A.C., McDonald, F.B., Trainor, J.H., Lal, N., McGuide, R.E., Chenette, D.L.: Energetic particles in the uranian magnetosphere. Science 233, 93–97 (1986)ADSCrossRefGoogle Scholar
  58. 58.
    Stone, E.C., Miner, E.D.: The Voyager 2 encounter with the uranian system. Science 233, 39–43 (1986). doi:10.1126/science.233.4759.39 ADSCrossRefGoogle Scholar
  59. 59.
    Stone, E.C.: The Voyager 2 encounter with Uranus. J. Geophys. Res. 92(A13), 14873–14876 (1987). doi:10.1029/JA092iA13p14873 ADSCrossRefGoogle Scholar
  60. 60.
    Tittemore, W.C., Wisdom, J.: Tidal evolution of the Uranian satellites—II. An explanation of the anomalously high orbital inclination of Miranda. Icarus 78, 63–89 (1989)ADSCrossRefGoogle Scholar
  61. 61.
    Tittemore, W.C., Wisdom, J.: Tidal evolution of the Uranian satellites. III—evolution through the Miranda–Umbriel 3:1, Miranda–Ariel 5:3, and Ariel–Umbriel 2:1 mean-motion commensurabilities. Icarus 85, 394–443 (1990). doi:10.1016/0019-1035(90)90125-S ADSCrossRefGoogle Scholar
  62. 62.
    Tittemore, W.C.: Tidal heating of Ariel. Icarus 87, 110–139 (1990). doi:10.1016/0019-1035(90)90024-4 ADSCrossRefGoogle Scholar
  63. 63.
    Tóth, G., Kovács, D., Hansen, K.C., Gombosi, T.I.: Three-dimensional MHD simulations of the magnetosphere of Uranus. J. Geophys. Res. 109, A11210 (2004). doi:10.1029/2004JA010406 CrossRefGoogle Scholar
  64. 64.
    Trafton, L.M., Miller, S., Geballe, T.R., Tennyson, J., Ballester, G.E.: H2 Quadrupole and H\(_{3}^{+}\) emission from Uranus: the Uranian thermosphere, ionosphere, and aurora. Astrophys. J. 524(2), 1059–1083 (1999). doi:10.1086/307838 ADSCrossRefGoogle Scholar
  65. 65.
    Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F.: Origin of the orbital architecture of the giant planets of the solar system. Nature 435, 459–461 (2005). doi:10.1038/nature03539 ADSCrossRefGoogle Scholar
  66. 66.
    Vasavada, A.R., Showman, A.P.: Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935–1996 (2005). doi:10.1088/0034-4885/68/8/R06 MathSciNetADSCrossRefGoogle Scholar
  67. 67.
    Vasyliūnas, V.M.: The convection-dominated magnetosphere of Uranus. Geophys. Res. Lett. 13, 621–623 (1986). doi:10.1029/GL013i007p00621 ADSCrossRefGoogle Scholar
  68. 68.
    Zarka, P., Lecacheux, A.: Beaming of Uranian nightside kilometric radio emission and inferred source location. J. Geophys. Res. 92, 15177–15187 (1987). doi:10.1029/JA092iA13p15177 ADSCrossRefGoogle Scholar
  69. 69.
    Zarka, P.: Auroral radio emissions at the outer planets: observations and theories. J. Geophys. Res. 103, 20159–20194 (1998)ADSCrossRefGoogle Scholar
  70. 70.
    Zarka, P.: Plasma interactions of exoplanets with their parent star and associated radio emissions. Planet. Space Sci. 55(5), 598–617 (2007). doi:10.1016/j.pss.2006.05.045 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Christopher S. Arridge
    • 5
    • 6
  • Craig B. Agnor
    • 2
  • Nicolas André
    • 4
  • Kevin H. Baines
    • 8
  • Leigh N. Fletcher
    • 22
  • Daniel Gautier
    • 14
  • Mark D. Hofstadter
    • 8
  • Geraint H. Jones
    • 5
    • 6
  • Laurent Lamy
    • 14
  • Yves Langevin
    • 30
  • Olivier Mousis
    • 34
  • Nadine Nettelmann
    • 35
  • Christopher T. Russell
    • 40
  • Tom Stallard
    • 33
  • Matthew S. Tiscareno
    • 9
  • Gabriel Tobie
    • 47
  • Andrew Bacon
    • 7
  • Chris Chaloner
    • 7
  • Michael Guest
    • 7
  • Steve Kemble
    • 29
  • Lisa Peacocke
    • 29
  • Nicholas Achilleos
    • 1
  • Thomas P. Andert
    • 3
  • Don Banfield
    • 9
  • Stas Barabash
    • 10
  • Mathieu Barthelemy
    • 11
  • Cesar Bertucci
    • 12
  • Pontus Brandt
    • 13
  • Baptiste Cecconi
    • 14
  • Supriya Chakrabarti
    • 15
  • Andy F. Cheng
    • 13
  • Ulrich Christensen
    • 16
  • Apostolos Christou
    • 17
  • Andrew J. Coates
    • 5
    • 6
  • Glyn Collinson
    • 18
  • John F. Cooper
    • 18
  • Regis Courtin
    • 14
  • Michele K. Dougherty
    • 19
  • Robert W. Ebert
    • 20
  • Marta Entradas
    • 21
  • Andrew N. Fazakerley
    • 5
    • 6
  • Jonathan J. Fortney
    • 23
  • Marina Galand
    • 19
  • Jaques Gustin
    • 24
  • Matthew Hedman
    • 9
  • Ravit Helled
    • 25
  • Pierre Henri
    • 14
  • Sebastien Hess
    • 26
  • Richard Holme
    • 27
  • Özgur Karatekin
    • 28
  • Norbert Krupp
    • 16
  • Jared Leisner
    • 31
  • Javier Martin-Torres
    • 32
  • Adam Masters
    • 5
    • 6
  • Henrik Melin
    • 33
  • Steve Miller
    • 21
  • Ingo Müller-Wodarg
    • 19
  • Benoît Noyelles
    • 36
  • Chris Paranicas
    • 13
  • Imke de Pater
    • 37
  • Martin Pätzold
    • 38
  • Renée Prangé
    • 14
  • Eric Quémerais
    • 39
  • Elias Roussos
    • 16
  • Abigail M. Rymer
    • 13
  • Agustin Sánchez-Lavega
    • 41
  • Joachim Saur
    • 42
  • Kunio M. Sayanagi
    • 25
  • Paul Schenk
    • 43
  • Gerald Schubert
    • 25
  • Nick Sergis
    • 44
  • Frank Sohl
    • 45
  • Edward C. SittlerJr.
    • 18
  • Nick A. Teanby
    • 46
  • Silvia Tellmann
    • 38
  • Elizabeth P. Turtle
    • 13
  • Sandrine Vinatier
    • 14
  • Jan-Erik Wahlund
    • 48
  • Philippe Zarka
    • 14
  1. 1.Department of Physics and AstronomyUniversity College LondonLondonUK
  2. 2.School of Physics and AstronomyQueen Mary University of LondonLondonUK
  3. 3.Universität der BundeswehrMunichGermany
  4. 4.Centre d’Etude Spatiale des Rayonnements / CNRSToulouseFrance
  5. 5.Mullard Space Science Laboratory, Department of Space and Climate PhysicsUniversity College LondonLondonUK
  6. 6.The Centre for Planetary Sciences at UCL/BirkbeckLondonUK
  7. 7.Systems Engineering and Asssessment Ltd.BristolUK
  8. 8.NASA Jet Propulsion LaboratoryPasadenaUSA
  9. 9.Cornell UniversityIthacaUSA
  10. 10.Swedish Institute of Space PhysicsKirunaSweden
  11. 11.Université Joseph Fourier/CNRS-INSU / Institut de Planétologie et d’Astrophysique de Grenoble (IPAG)GrenobleFrance
  12. 12.Institute of Astronomy and Space PhysicsUniversity of Buenos AiresBuenos AiresArgentina
  13. 13.Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  14. 14.LESIA, CNRS-Observatoire de ParisMeudonFrance
  15. 15.Centre for Space PhysicsBoston UniversityBostonUSA
  16. 16.Max Planck Institute for Solar System ResearchKatlenburg-LindauGermany
  17. 17.Armagh ObservatoryArmaghUK
  18. 18.NASA Goddard Space Flight CentreGreenbeltUSA
  19. 19.The Blackett LaboratoryImperial College LondonLondonUK
  20. 20.Southwest Research InstituteSan AntonioUSA
  21. 21.Department of Science and Technology StudiesUniversity College LondonLondonUK
  22. 22.Department of PhysicsUniversity of OxfordOxfordUK
  23. 23.University of CaliforniaSanta CruzUSA
  24. 24.Laboratoire de Physique Atmosphérique et PlanétaireUniversité de LiègeLiègeBelgium
  25. 25.Department of Earth and Space SciencesUniversity of CaliforniaLos AngelesUSA
  26. 26.University of ColoradoBoulderUSA
  27. 27.School of Environmental SciencesUniversity of LiverpoolLiverpoolUK
  28. 28.Royal Observatory of BelgiumBrusselsBelgium
  29. 29.EADS AstriumStevenageUK
  30. 30.Institut d’Astrophysique Spatiale, CNRS/Univ. Paris-Sud 11OrsayFrance
  31. 31.Department of Physics and AstronomyUniversity of IowaIowa CityUSA
  32. 32.Centre for AstrobiologyMadridSpain
  33. 33.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  34. 34.Institut UTINAM, CNRS, OSU THETAUniversité de Franche-ComtéBesançonFrance
  35. 35.Universität RostockRostockGermany
  36. 36.Namur Centre for Complex Systems (NAXYS)University of NamurNamurBelgium
  37. 37.University of CaliforniaBerkeleyUSA
  38. 38.Rhenish Institute for Environmental ResearchUniversity of CologneCologneGermany
  39. 39.LATMOS, CNRSGuyancourtFrance
  40. 40.Institute for Geophysics and Planetary PhysicsUniversity of California Los AngelesLos AngelesUSA
  41. 41.University of the Basque CountryBilbaoSpain
  42. 42.Institute of Geophysics and MeteorologyUniversity of CologneCologneGermany
  43. 43.Lunar and Planetary InstituteHoustonUSA
  44. 44.Office for Space ResearchAcademy of AthensAthensGreece
  45. 45.Institute of Planetary Research, DLRBerlinGermany
  46. 46.School of Earth SciencesUniversity of BristolBristolUK
  47. 47.LPG, CNRSUniversité de NantesNantesFrance
  48. 48.Swedish Institute of Space PhysicsUppsalaSweden

Personalised recommendations