Experimental Astronomy

, Volume 33, Issue 2–3, pp 587–644 | Cite as

Lunar Net—a proposal in response to an ESA M3 call in 2010 for a medium sized mission

  • Alan Smith
  • I. A. Crawford
  • Robert Anthony Gowen
  • R. Ambrosi
  • M. Anand
  • B. Banerdt
  • N. Bannister
  • N. Bowles
  • C. Braithwaite
  • P. Brown
  • J. Chela-Flores
  • T. Cholinser
  • P. Church
  • A. J. Coates
  • T. Colaprete
  • G. Collins
  • G. Collinson
  • T. Cook
  • R. Elphic
  • G. Fraser
  • Y. Gao
  • E. Gibson
  • T. Glotch
  • M. Grande
  • A. Griffiths
  • J. Grygorczuk
  • M. Gudipati
  • A. Hagermann
  • J. Heldmann
  • L. L. Hood
  • A. P. Jones
  • K. H. Joy
  • O. B. Khavroshkin
  • G. Klingelhoefer
  • M. Knapmeyer
  • G. Kramer
  • D. Lawrence
  • W. Marczewski
  • S. McKenna-Lawlor
  • K. Miljkovic
  • S. Narendranath
  • E. Palomba
  • A. Phipps
  • W. T. Pike
  • D. Pullan
  • J. Rask
  • D. T. Richard
  • K. Seweryn
  • S. Sheridan
  • M. Sims
  • M. Sweeting
  • T. Swindle
  • D. Talboys
  • L. Taylor
  • N. Teanby
  • V. Tong
  • S. Ulamec
  • R. Wawrzaszek
  • M. Wieczorek
  • L. Wilson
  • I Wright
Original Article

Abstract

Emplacement of four or more kinetic penetrators geographically distributed over the lunar surface can enable a broad range of scientific exploration objectives of high priority and provide significant synergy with planned orbital missions. Whilst past landed missions achieved a great deal, they have not included a far-side lander, or investigation of the lunar interior apart from a very small area on the near side. Though the LCROSS mission detected water from a permanently shadowed polar crater, there remains in-situ confirmation, knowledge of concentration levels, and detailed identification of potential organic chemistry of astrobiology interest. The planned investigations will also address issues relating to the origin and evolution of the Earth–Moon system and other Solar System planetary bodies. Manned missions would be enhanced with use of water as a potential in-situ resource; knowledge of potential risks from damaging surface Moonquakes, and exploitation of lunar regolith for radiation shielding. LunarNet is an evolution of the 2007 LunarEX proposal to ESA (European Space Agency) which draws on recent significant advances in mission definition and feasibility. In particular, the successful Pendine full-scale impact trials have proved impact survivability for many of the key technology items, and a penetrator system study has greatly improved the definition of descent systems, detailed penetrator designs, and required resources. LunarNet is hereby proposed as an exciting stand-alone mission, though is also well suited in whole or in-part to contribute to the jigsaw of upcoming lunar missions, including that of a significant element to the ILN (International Lunar Network).

Keywords

Moon Lunar Penetrators Space Technology MEMS 

References

  1. 1.
    Araki, H., Sasaki, S., Ishihara, Y., Noda, H., Hanada, H., Matsumoto, K., Kikuchi, F., Goossens, S., Namiki, N., Iwata, T.: The first global topography and gravimetry of the Moon by Kaguya. EPSC Abstracts, 2010–427 (2010)Google Scholar
  2. 2.
    Astrium: 2010, Contract Report to ESA: Design Update for Europa Issue-1, (JGOP-ASU-TN-006–1 PDM), 13 August 2010Google Scholar
  3. 3.
    Binder, A.B., Oberst, J.: High stress shallow Moonquakes: evidence for an initially totally molten Moon. Earth Planet. Sci. Lett. 74, 149–154 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    Bulow, R.C., Johnson, C.L., Bills, B.G., Shearer, P.M.: Temporal and spatial properties of some deep Moonquake clusters. J. Geophys. Res. 112, E09003 (2007). doi:10.1029/2006JE002848 CrossRefGoogle Scholar
  5. 5.
    Church, P.: QinetiQ, LunarEX study report (2007)Google Scholar
  6. 6.
    Church, P., Huntington-Thresher, W., Bruce, A., Penny, N., Smith, A., Gowen, R.: Demonstration of Survivable Space Penetrator, Proc APS Conference, Nashville, USA (2009)Google Scholar
  7. 7.
    Chyba, C.F., Sagan, C.: Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355, 125–132 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermalyn, B., Marshall, W., Ricco, A., Elphic, R.C., Goldstein, D., Summy, D., Bart, G.D., Asphaug, E., Korycansky D., Landis D., Sollitt L.: Detection of water in the LCROSS ejecta plume. Science 330, 463–468 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Crawford, I.A.: The scientific case for renewed human activities on the Moon. Space Policy 20, 91–97 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Crawford, I.A., The astrobiological case for renewed human and robotic exploration of the Moon. Int. J. Astrobiol. 5, 191–197 (2006)CrossRefGoogle Scholar
  11. 11.
    Crider, D.H., Vondrak, R.R: Hydrogen migration to the lunar poles by solar wind bombardment of the Moon. Adv. Space Res. 30, 1869–1874 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    ESA, D.: Southwood, Call for a Medium-size mission opportunity for a launch in 2022, D/SRE/DJS/FF/ve/26771, Paris, 29 July 2010Google Scholar
  13. 13.
    Ewing, M., Latham, G., Press, F., Sutton, G., Dorman, J., Nakamura, Y., Meissner, R., Duennebier, F., Kovach, R.: Seismology of the Moon and implications on internal structure, origin and evolution. In: De Jager, (ed.) Highlights of astronomy, pp. 155–172, D. Reidel, Dordrecht (1971)CrossRefGoogle Scholar
  14. 14.
    Feldman, W.C., Maurice, S., Binder, A.B., Barraclough, B.L., Elphic, R.C., Lawrence, D.J.: Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles. Science 281, 1496–1500 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    Frohlich, C., Nakamura, Y.: Possible extra-Solar-System cause for certain lunar seismic events icarus. 185, 21–28 (2006)Google Scholar
  16. 16.
    Fulchignoni, M., Ferri, F., Angrilli, F., Bar-Nun, A., Barucci, M.A., Bianchini, G., Boruck, W., Coradini, M., Coustenis, A., Falkner, P., Flamini, E., Grard, R., Hamelin, M., Harri, A.M., Leppelmeier, G.W., Lopez-Moreno, J.J, Mcdonnell, J.A.M., Mckay, C.P., Neubauer, F.H., Pedersen, A., Picardi, G., Pirronello, V., Rodrigo, R., Schwingenschuh, K., Seiff, A., Svedhem, H., Vanzani, V., Zarnecki, J.: The characterisation of Titan’s atmospheric physical properties by the huygens atmospheric structure instrument (Hasi). Space Sci. Rev. 104(1), 395–431 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    GES (2007) The global exploration strategy: framework for coordination. Available online at: http://esamultimedia.esa.int/docs/GES_Framework_final.pdf. Accessed 25 March 2011
  18. 18.
    Gao, Y., Phipps, A., Taylor, M., Crawford, I.A., Ball, A.J., Wilson, L., Parker, D., Sweeting, M., da Silva Curiel, A., Davies, P., Baker, A., Pike, W.T., Smith, A., Gowen, R.A.: Lunar science with affordable small spacecraft technologies: MoonLITE and Moonraker. Planet. Space Sci. 56, 368–377 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    Gehler, M., Wielders, A.: Payload definition document for a jupiter icy moon penetrator, SCI-PA/2009.076 (2010)Google Scholar
  20. 20.
    Glotch, T.D., Lucey, P.G., Bandfield, J.L., Greenhagen, B.T., Thomas, I.R., Elphic, R.C., Bowles, N., Wyatt, M.B., Allen, C.C., Hanna, K.D., Paige, D.A.: Highly silicic compositions on the Moon. Science 329, 1510–1513 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    Goins, N.R., Dainty, A.M., Toksöz, M.N.: Lunar seismology – the internal structure of the Moon. J. Geophys. Res. 86, 5061–5074 (1981)ADSCrossRefGoogle Scholar
  22. 22.
    Gowen, R.A. et al.: Penetrators for in situ sub-surface investigations of Europa. Adv. Space Res. (2010). doi:10.1016/j.asr.2010.06.026 Google Scholar
  23. 23.
    Greenhagen, B.T., et al.: Global silicate mineralogy of the Moon from the Diviner lunar radiometer. Science, 329, 1507–1509 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Griffiths, A.D., Coates, A.J., Jaumann, R., Michaelis, H., Paar, G., Barnes, D., Josset, J.-L., and the PanCam team: Context for the ESA ExoMars Rover: the Panoramic Camera (PanCam) Instrument. Int. J. Astrobiol. 5, 269–275. doi:10.1017/S1473550406003387 (2006)CrossRefGoogle Scholar
  25. 25.
    Hagermann, A.: Planetary heat flow measurements. Phil. Trans. R. Soc. A 363, 2777–2791 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Hagermann, A., Tanaka, S: Ejecta deposit thickness, heat-flow, and a critical ambiguity on the Moon. Geophys. Res. Lett. 33, L19203 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    Hopf, T., Kumar, S., Karl, W.J., Pike, W.T.: Shock protection of penetrator-based instrumentation via a sublimation approach. Adv. Space Res. 45, 460–467 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    ILN Final Report: Science Definition Team for the ILN Anchor Nodes, NASA, pp. 45. (http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20090014121_2009013378.pdf) (2009)
  29. 29.
    Jolliff, B.L., Gillis, J.J., Haskin, L.A., Korotev, R.L., Wieczorek, M.A.: Major lunar crustal terranes: surface expressions and crust-mantle origins. J. Geophys. Res. 105(E2), 4197–4216 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    Jolliff, B.A., et al. (eds). New views of the Moon. Rev. Min. Geochem., 60, 1–721, (2006)CrossRefGoogle Scholar
  31. 31.
    Khan, A. An inquiry into the lunar interior – a non-linear inversion of the Apollo seismic data. J. Geophys. Res. 107, 1–23 (2002)CrossRefGoogle Scholar
  32. 32.
    Langseth, M.G., Keihm, S., Peters, K.: Revised lunar heat-flow values. Lunar Planet. Sci. Conf. 7, 3143–3171 (1976)ADSGoogle Scholar
  33. 33.
    Lognonné, P. Planetary seismology. Ann. Rev. Earth. Planet. Sci. 33, 571–604 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    Lognonné, P., et al.: A new seismic model of the Moon. Earth Planet. Sci. Lett. 211, 27–44 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    Lognonné, P., Johnson, C.L.: Planetary Seismology. Treatise Geophys. 10, 69–123 (2007)CrossRefGoogle Scholar
  36. 36.
    Lucey, P.G.: Potential for prebiotic chemistry at the poles of the Moon. Proc. SPIE 4137, (2000)Google Scholar
  37. 37.
    May, R.D., Webster, C.R.: Data-processing and calibration for uneable diode-laser harmonic absorption spectrometer. J. Quant. Spectrosc. Radiant. Transfer 49, 335–347 (1993)ADSCrossRefGoogle Scholar
  38. 38.
    Mizutani, H., Fujimura, A., Hayakawa, M., et al.: In: Kömle, N.I., Kargl, G., Ball, A.J., Lorenz, R.D. (eds.) Penetrometry in the solar system, pp. 125–136. Austrian Academy of Sciences Press, Vienna (2001)Google Scholar
  39. 39.
    Mizutani, H., Fujimura, A., Tanaka, S., Shiraishi, H., Nakajima, T.: Lunar-A mission: goals and status. Adv. Space Res. 31(11), 2315–2321 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    Mizutani, H., Fujimura, A., Tanaka, S., Shiraishi, H., Nakjima, T.: Lunar-A mission: outline and current status. J. Earth Sys. Sci. 114(6), 763–768 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    Mosher, T.J., Lucay, P.: Polar night: a lunar volatile expedition. In: Proc. 5th IAA International Conference on Low Cost Planetary Missions (2003)Google Scholar
  42. 42.
    Nakamura, Y., Latham, G.V., Dorman, H.J., Ibrahim, A.-B.K., Koyama, J., Horvath, P.: Shallow Moonquakes: depth, distribution and implications as to the present state of the lunar interior. Proc. Lunar Planet. Conf. 10, 2299–2309 (1979)ADSGoogle Scholar
  43. 43.
    Nakamura, Y.: Seismic velocity structure of the lunar mantle. J. Geophys. Res. 88(1983), 677–686 (1983)ADSCrossRefGoogle Scholar
  44. 44.
    Neal. C.R.: The importance of establishing a global lunar seismic network. Paper presented at the 2005 Space Resources Roundtable, Abstract #2065, (2005)Google Scholar
  45. 45.
    National Research Council (NRC), The Scientific Context for Exploration of the Moon, Final Report, Natl. Acad. Press, pp. 113. Washington, D. C. (2007)Google Scholar
  46. 46.
    Overmaat, T: Optimisation of a Lateral Capacitive Array Transducer M.Sc. Thesis, Imperial College London (2005)Google Scholar
  47. 47.
    Paige, D.A., et al.: Diviner Lunar radiometer observations of cold traps in the Moon’s South Polar Region. Science 330, 479–482 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Peterson, J.: Observations and modeling of seismic background noise. U. S. Geol. Surv., Open File Rep. 93–322 (1993)Google Scholar
  49. 49.
    Pierazzo, E., Chyba, C.F.: Amino acid survival in large cometary impacts. Meteorit. Planet. Sci. 34, 909–918 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    Pieters, C.M., et al.: Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326, 568–572 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    Pike, W.T., Standley, I.M.: Determination of the dynamics of micromachined lateral suspensions in the scanning electron microscope. J. Micromech. Microeng. 15, S82–S88 (2005)CrossRefGoogle Scholar
  52. 52.
    Pike, W.T., Karl, W.J., Kumar, S., Vijendran, S., Semple, T.: Analysis of sidewall quality in through-wafer deep reactive-ion etching. Microelectron. Engng. 73–74, 340 (2004)CrossRefGoogle Scholar
  53. 53.
    Pike, W.T., et al.: Micromachined Accelerometer U.S. Patent 7,036,374 (2006)Google Scholar
  54. 54.
    Seidensticker, K.J., et al.: Sesame - an experiment of the Rosetta Lander Philae: objectives and general design. Space Sci. Rev. 128(1), 301–337 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    Smith, A., et al.: LunarEX – a proposal to cosmic vision. Exp. Astron. 23, 711–740 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Smith, A., et al.: Application of penetrators within the solar system, technology challenges and status. Ad. Geosci. 19, 307–320 2010Google Scholar
  57. 57.
    Simoes, F., et al.: A Mutual Impedance Probe for Measuring the Dielectric Properties of the Atmos-phere and Surface of Planetary Environments. 4th Int. Planet. Probe Workshop, JPL (2006).Google Scholar
  58. 58.
    Smrekar, S., Smrekar, S., Catling, D., Lorenz, R., Magalhaes, J., Moersch, J., Morgan, P., Murphy, J., Murray, B., Presley-Holloway, M., Yen, A., Zent, A., Blaney, D.: Deep Space 2: the Mars microprobe mission. J. Geophys. Res. 104(E11), 27013–27030 (1999)ADSCrossRefGoogle Scholar
  59. 59.
    Spudis, P.D.: The Once and Future Moon, Smith. Inst. Press (1996)Google Scholar
  60. 60.
    Surkov, Y.A., Kremnev, R.S.: Mars-96 mission: mars exploration with the use of penetrators. Planet. Space Sci. 46(11–12), 1689–1696 (1998)ADSCrossRefGoogle Scholar
  61. 61.
    Tanaka, S., Yoshida, Hayakawa, M., Horai, K., Fujimura, A., Mizutani, H.: Development of the heat flow measurement system by the Lunar-A penetrators. Adv. Space Res. 23, 1825–1828 (1999)ADSCrossRefGoogle Scholar
  62. 62.
    Tanaka, S., Yoshida, S., Hayakawa, M., Fujimura, A., Mizutani, H.: Thermal Model of the Lunar-A Penetrator and its effect on the accuracy for Lunar heat flow experiment, ESA SP-462 (2000)Google Scholar
  63. 63.
    Talboys, D.L., Potts, P.J., Fraser, G. W., Butcher, G., Wegrzynek, D.: “The comparative analytical performance of the Beagle 2 X-ray Spectrometer for in situ geochemical analysis on Mars.” X-Ray Spectrom. 38(5), 417–428 (2009)CrossRefGoogle Scholar
  64. 64.
    Trotignon, J.G., et al.: RPC-MIP: the mutual impedance probe of the Rosetta plasma consortium. Space Sci. Rev. 128(1), 713–728 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    Vaniman, D., Reedy, R., Heiken, G., Olhoeft, G., Mendell, W.: The lunar environment. In: The Lunar Sourcebook, CUP, pp. 27–60. (1991)Google Scholar
  66. 66.
    Weber, R.C., Lin, P.-Y., Garnero, E.J., Williams, Q., Lognonné, P.: Seismic detection of the lunar core. Science 331, 309–312 (2011)ADSCrossRefGoogle Scholar
  67. 67.
    Wells, N.: LunarEX Penetrator Power and Communications Study Technical Note. Issue 1, QinetiQ, 01-June-2007Google Scholar
  68. 68.
    Wieczorek, M.A., Phillips, R.J.: The Procellarum KREEP Terrane: implications for mare volcanism and lunar evolution. J. Geophys. Res. 105(E8), 20417–20430 (2000)ADSCrossRefGoogle Scholar
  69. 69.
    Wieczorek, M.A., Jolliff, B.L., Khan, A., Pritchard, M.E., Weiss, B.P., Williams, J.D., Hood, L.L., Righter, K., Neal, C.R., Shearer, C.K., McCallum, I.S., Tompkins, S., Hawke, B.R., Peterson, C., Gillis, J.J., Bussey, B.: New views of the Moon. Rev. Min. Geochem. 60, 221–364 (2006)CrossRefGoogle Scholar
  70. 70.
    Wielandt, E., Streckeisen, G.: The leaf spring seismometer: design and performance. Bull. Seism. Soc. Am. 49, 294–303 (1982)Google Scholar
  71. 71.
    Wilson, L., Head, J.W.: Lunar Gruithuisen and Mairan Domes: rheology and mode of emplacement. J. Geophys. Res. - Planets 108(E2), 5012 (2003). doi:10.1029/2002JE001909 ADSCrossRefGoogle Scholar
  72. 72.
    Wright, I.P., Barber, S.J., Morgan, G.H., Morse, A.D., Sheridan, S., Andrews, D.J., Maynard, J.M., Yau, D., Evans, S.T., Leese, M.R., Zarnecki, J.C., Kent, B.J., Waltham, N.R., Whalley, M.S., Heys, S.C., Drummond, D.L., Edeson, R.L., Sawyer, E.C., Turner, R.F., Pillinger, C.T.: Ptolemy – an instrument to measure stable isotopic ratios of key volatiles on a cometary nucleus. Space Sci. Rev. 128(1–4), 363–381 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Alan Smith
    • 1
  • I. A. Crawford
    • 2
  • Robert Anthony Gowen
    • 1
  • R. Ambrosi
    • 8
  • M. Anand
    • 7
  • B. Banerdt
    • 35
  • N. Bannister
    • 8
  • N. Bowles
    • 13
  • C. Braithwaite
    • 9
  • P. Brown
    • 3
  • J. Chela-Flores
    • 18
  • T. Cholinser
    • 25
  • P. Church
    • 6
  • A. J. Coates
    • 1
  • T. Colaprete
    • 27
  • G. Collins
    • 1
    • 3
  • G. Collinson
    • 26
  • T. Cook
    • 14
  • R. Elphic
    • 32
  • G. Fraser
    • 8
  • Y. Gao
    • 5
  • E. Gibson
    • 34
  • T. Glotch
    • 29
  • M. Grande
    • 14
  • A. Griffiths
    • 1
  • J. Grygorczuk
    • 16
  • M. Gudipati
    • 35
  • A. Hagermann
    • 7
  • J. Heldmann
    • 32
  • L. L. Hood
    • 30
  • A. P. Jones
    • 4
  • K. H. Joy
    • 36
  • O. B. Khavroshkin
    • 23
  • G. Klingelhoefer
    • 19
  • M. Knapmeyer
    • 21
  • G. Kramer
    • 36
  • D. Lawrence
    • 28
  • W. Marczewski
    • 16
  • S. McKenna-Lawlor
    • 15
  • K. Miljkovic
    • 3
  • S. Narendranath
    • 24
  • E. Palomba
    • 17
  • A. Phipps
    • 10
  • W. T. Pike
    • 3
  • D. Pullan
    • 8
  • J. Rask
    • 27
  • D. T. Richard
    • 31
  • K. Seweryn
    • 16
  • S. Sheridan
    • 7
  • M. Sims
    • 8
  • M. Sweeting
    • 10
  • T. Swindle
    • 30
  • D. Talboys
    • 8
  • L. Taylor
    • 33
  • N. Teanby
    • 12
  • V. Tong
    • 2
  • S. Ulamec
    • 22
  • R. Wawrzaszek
    • 16
  • M. Wieczorek
    • 20
  • L. Wilson
    • 11
  • I Wright
    • 7
  1. 1.Mullard Space Science LaboratoryUniversity College LondonSurreyUK
  2. 2.Department of Earth and Planetary Sciences, Birkbeck CollegeUniversity of LondonLondonUK
  3. 3.Imperial College LondonLondonUK
  4. 4.Department of Earth SciencesUniversity College LondonLondonUK
  5. 5.Surrey Space CentreUniversity of SurreyGuildfordUK
  6. 6.QinetiQ Ltd.SevenoaksUK
  7. 7.CEPSAROpen UniversityMilton KeynesUK
  8. 8.University of LeicesterLeicesterUK
  9. 9.Cavendish LaboratoryCambridgeUK
  10. 10.SSTL, Tycho HouseGuildfordUK
  11. 11.Lancaster UniversityLancasterUK
  12. 12.School of Earth SciencesUniversity of BristolBristolUK
  13. 13.Oxford UniversityOxfordUK
  14. 14.Institute of Mathematical and Physical SciencesUniversity of Wales AberystwythAberystwythUK
  15. 15.Space Technology IrelandNational University of IrelandMaynoothIreland
  16. 16.Space Research CentrePolish Academy of SciencesWarsawPoland
  17. 17.IFSI-INAFRomeItaly
  18. 18.The Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  19. 19.Institute for Inorganic and Analytic ChemistryJohannes Gutenberg-UniversityMainzGermany
  20. 20.Institut de Physique du Globe de ParisUniv Paris DiderotParisFrance
  21. 21.DLRInstitute of Planetary ResearchBerlinGermany
  22. 22.DLR-MUSCCologneGermany
  23. 23.Institute of Physics of the EarthRussian Academy of SciencesMoscowRussia
  24. 24.ISROBangaloreIndia
  25. 25.Hong KongChina
  26. 26.NASA Goddard Spaceflight CenterGreenbeltUSA
  27. 27.NASA AmesMoffett FieldUSA
  28. 28.Johns Hopkins APLLaurelUSA
  29. 29.Stony Brook UniversityStony BrookUSA
  30. 30.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  31. 31.San Jose State University/NASA Ames Research Center MS 245–3Moffett FieldUSA
  32. 32.NASA Ames Research CenterMoffett FieldUSA
  33. 33.University of TennesseeKnoxvilleUSA
  34. 34.NASA Johnson Space CenterHoustonUSA
  35. 35.Jet Propulsion LaboratoryPasadenaUSA
  36. 36.Center for Lunar Science and ExplorationLunar and Planetary InstituteHoustonUSA

Personalised recommendations