Experimental Astronomy

, Volume 33, Issue 2–3, pp 365–401 | Cite as

IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites—a mission concept proposed for the ESA M3 2020/2022 launch

  • Christopher J. OwenEmail author
  • Olaf Amm
  • Roberto Bruno
  • Johan De Keyser
  • Malcolm W. Dunlop
  • Jonathan P. Eastwood
  • Andrew N. Fazakerley
  • Dominique Fontaine
  • Colin Forsyth
  • Hiroshi Hasegawa
  • Petr Hellinger
  • David Hercik
  • Christian Jacquey
  • Steven Milan
  • Joachim Raeder
  • David G. Sibeck
  • Stepan Stverak
  • Pavel Travnicek
  • Andrew P. Walsh
  • James A. Wild
Original Article


The dayside magnetopause is the primary site of energy transfer from the solar wind into the magnetosphere, and modulates the activity observed within the magnetosphere itself. Specific plasma processes operating on the magnetopause include magnetic reconnection, generation of boundary waves, propagation of pressure-pulse induced deformations of the boundary, formation of boundary layers and generation of Alfvén waves and field-aligned current systems connecting the boundary to the inner magnetosphere and ionosphere. However, many of the details of these processes are not fully understood. For example, magnetic reconnection occurs sporadically, producing flux transfer events, but how and where these arise, and their importance to the global dynamics of the magnetospheric system remain unresolved. Many of these phenomena involve propagation across the magnetopause surface. Measurements at widely-spaced (Δ ∼ 5 RE) intervals along the direction of dayside terrestrial field lines at the magnetopause would be decisive in resolving these issues. We describe a mission carrying a fields and plasmas payload (including magnetometer, ion and electron spectrometer and energetic particle telescopes) on three identical spacecraft in synchronized orbits. These provide the needed separations, with each spacecraft skimming the dayside magnetopause and continuously sampling this boundary for many hours. The orbits are phased such that (i) all three spacecraft maintain common longitude and thus sample along the same magnetopause field line; (ii) the three spacecraft reach local midday when northern European ground-based facilities also lie near local midday, enabling simultaneous sampling of magnetopause field lines and their footprints.


Magnetopause Magnetic reconnection Solar wind–magnetosphere coupling Cosmic vision 


  1. 1.
    Amm, O., Grocott, A., Lester, M., Yeoman, T.K.: Local determination of ionospheric plasma convection from coherent scatter radar data using the SECS technique. J. Geophys. Res.-Space 115, A03304 (2010). doi: 10.1029/2009ja014832 ADSCrossRefGoogle Scholar
  2. 2.
    Angelopoulos, V.: The THEMIS mission. Space Sci. Rev. 141, 5–34 (2008). doi: 10.1007/s11214-008-9336-1 ADSCrossRefGoogle Scholar
  3. 3.
    Chisham, G., Pinnock, M., Rodger, A.S., Villain, J.-P.: High-time resolution conjugate SuperDARN radar observations of the dayside convection response to changes in IMF. Ann. Geophys. 18, 191–201 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Chisham, G., Freeman, M.P., Coleman, I.J., Pinnock, M., Hairston, M.R., Lester, M., Sofko, G.: Measuring the dayside reconnection rate during an interval of due northward interplanetary magnetic field. Ann. Geophys. 22, 4243–4258 (2004). doi: 10.5194/angeo-22-4243-2004 ADSCrossRefGoogle Scholar
  5. 5.
    Cooling, B.M.A., Owen, C.J., Schwartz, S.J.: Role of the magnetosheath flow in determining the motion of open flux tubes. J. Geophys. Res.-Space 106(A9), 18763–18775 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    Cowley, S.W.H., Owen, C.J.: A simple illustrative model of open flux tube motion over the dayside magnetopause. Planet Space Sci. 37(11), 1461–1475 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    Dungey, J.W.: Interplanetary magnetic field and auroral zones. Phys. Rev. Lett. 6(2), 47 (1961)ADSCrossRefGoogle Scholar
  8. 8.
    Fairfield, D.H.: Average and unusual locations of Earth’s magnetopause and bow shock. J. Geophys. Res. 76(28), 6700 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    Fuselier, S.A., Trattner, K.J., Petrinec, S.M., Owen, C.J., Reme, H.: Computing the reconnection rate at the Earth’s magnetopause using two spacecraft observations. J. Geophys. Res.-Space 110(A6), A06212 (2005). doi: 10.1029/2004ja010805 ADSCrossRefGoogle Scholar
  10. 10.
    Gosling, J.T., Thomsen, M.F., Bame, S.J., Onsager, T.G., Russell, C.T.: The electron edge of the low latitude boundary-layer during accelerated flow events. Geophys. Res. Lett. 17(11), 1833–1836 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    Hasegawa, H., Retino, A., Vaivads, A., Khotyaintsev, Y., Andre, M., Nakamura, T.K.M., Teh, W.L., Sonnerup, B.U.O., Schwartz, S.J., Seki, Y., Fujimoto, M., Saito, Y., Reme, H., Canu, P.: Kelvin-Helmholtz waves at the Earth’s magnetopause: multiscale development and associated reconnection. J. Geophys. Res.-Space 114, A12207 (2009). doi: 10.1029/2009ja014042
  12. 12.
    Hasegawa, H., Wang, J., Dunlop, M.W., Pu, Z.Y., Zhang, Q.-H., Lavraud, B., Taylor, M.G.G.T., Constantinescu, O.D., Berchem, J., Angelopolous, V., McFadden, J.P., Frey, H.U., Panov, E.V., Volwerk, M., Bogdanova, Y.V. Geophys. Res. Lett. 37, L16101 (2010). doi: 10:1029/2010GL044219 ADSCrossRefGoogle Scholar
  13. 13.
    Horbury, T.S., Lucek, E.A.: Size, shape, and orientation of magnetosheath mirror mode structures. J. Geophys. Res.-Space 114, A05217 (2009). doi: 10.1029/2009ja014068 CrossRefGoogle Scholar
  14. 14.
    Kuznetsova, M.M., Sibeck, D.G., Hesse, M., Wang, Y., Rastaetter, L., Toth, G., Ridley, A.: Cavities of weak magnetic field strength in the wake of FTEs: results from global magnetospheric MHD simulations. Geophys. Res. Lett. 36, L10104 (2009). doi: 10.1029/2009gl037489 ADSCrossRefGoogle Scholar
  15. 15.
    Milan, S.E., Cowley, S.W.H., Lester, M., Wright, D.M., Slavin, J.A., Fillingim, M., Carlson, C.W., Singer, H.J.: Response of the magnetotail to changes in the open flux content of the magnetosphere. J. Geophys. Res.-Space 109(A4), A04220 (2004). doi: 10.1029/2003ja010350 ADSCrossRefGoogle Scholar
  16. 16.
    Milan, S.E., Lester, M., Cowley, S.W.H., Oksavik, K., Brittnacher, M., Greenwald, R.A., Sofko, G., Villain, J.P.: Variations in the polar cap area during two substorm cycles. Ann. Geophys.-Germany 21(5), 1121–1140 (2003)ADSGoogle Scholar
  17. 17.
    Nakamura, R., Retino, A., Baumjohann, W., Volwerk, M., Erkaev, N., Klecker, B., Lucek, E.A., Dandouras, I., Andre, M., Khotyaintsev, Y.: Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport. Ann. Geophys.-Germany 27(4), 1743–1754 (2009)ADSGoogle Scholar
  18. 18.
    Nakamura, T.K.M., Fujimoto, M., Otto, A.: Structure of an MHD-scale Kelvin-Helmholtz vortex: two-dimensional two-fluid simulations including finite electron inertial effects. J. Geophys. Res.-Space 113(A9), A09204 (2008). doi: 10.1029/2007ja012803 ADSCrossRefGoogle Scholar
  19. 19.
    Owen, C.J., Marchaudon, A., Dunlop, M.W., Fazakerley, A.N., Bosqued, J.M., Dewhurst, J.P., Fear, R.C., Fuselier, S.A., Balogh, A., Reme, H.: Cluster observations of “crater” flux transfer events at the dayside high-latitude magnetopause. J. Geophys. Res.-Space 113(A7), A07s04 (2008). doi: 10.1029/2007ja012701 CrossRefGoogle Scholar
  20. 20.
    Paschmann, G., Haerendel, G., Papamastorakis, I., Sckopke, N., Bame, S.J., Gosling, J.T., Russell, C.T.: Plasma and magnetic-field characteristics of magnetic-flux transfer events. J. Geophys. Res.-Space 87(Na4), 2159–2168 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    Paularena, K.I., Richardson, J.D., Kolpak, M.A., Jackson, C.R., Siscoe, G.L.: A dawn-dusk density asymmetry in Earth’s magnetosheath. J. Geophys. Res.-Space 106(A11), 25377–25394 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    Phan, T.D., Paschmann, G., Baumjohann, W., Sckopke, N., Luhr, H.: The magnetosheath region adjacent to the dayside magnetopause - AMPTE/IRM observations. J. Geophys. Res.-Space 99(A1), 121–141 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    Raeder, J.: Flux Transfer Events: 1. generation mechanism for strong southward IMF. Ann. Geophys.-Germany 24(1), 381–392 (2006)ADSGoogle Scholar
  24. 24.
    Rijnbeek, R.P., Cowley, S.W.H., Southwood, D.J., Russell, C.T.: A survey of dayside flux-transfer events observed by Isee-1 and Isee-2 magnetometers. J. Geophys. Res.-Space 89(Na2), 786–800 (1984)ADSCrossRefGoogle Scholar
  25. 25.
    Russell, C.T., Elphic, R.C.: Initial Isee magnetometer results—magnetopause observations. Space Sci. Rev. 22(6), 681–715 (1978)ADSCrossRefGoogle Scholar
  26. 26.
    Russell, C.T., Elphic, R.C.: Isee observations of flux-transfer events at the dayside magnetopause. Geophys. Res. Lett. 6(1), 33–36 (1979)ADSCrossRefGoogle Scholar
  27. 27.
    Schwartz, S.J., Horbury, T.S., Owen, C.J., Baumjohann, W., Nakamura, R., Canu, P., Roux, A., Sahraoui, F., Louarn, P., Sauvaud, J.-A., Pincon, J.-L., Vaivads, A., Marcucci, M.F., Anastasiadis, A., Fujimoto, M., Escoubet, C.P., Taylor. M.G.G.T., Eckersley, S., Allouis, E., Perkinson, M.-C.: Cross-scale: multi-scale coupling in space plasmas. Exp. Astron. 23, 1001–1015 (2009). doi: 10.1007/s10686-008-9085-x ADSCrossRefGoogle Scholar
  28. 28.
    Schwartz, S.J., Bale, S.D., Fujimoto, M., Hellinger, P., Le, G., Liu, W., Louarn, P., Mann, I., Nakamura, R., Owen, C.J., Pinçon, J.-L., Sorriso-Valvo, L., Vaivads, A., Wimmer-Schweingruber, R.F., Falkner, P., Wielders, A., Escoubet, C.P., Taylor, M., Masson, A.: Multi-scale coupling in space plasmas. Cross-scale assessment study report (ESA/SRE-2009-1), ESA, 1 Dec 2009Google Scholar
  29. 29.
    Sibeck, D.G.: A model for the transient magnetospheric response to sudden solar-wind dynamic pressure variations. J. Geophys. Res.-Space 95(A4), 3755–3771 (1990)ADSCrossRefGoogle Scholar
  30. 30.
    Sibeck, D.G., Borodkova, N.L., Schwartz, S.J., Owen, C.J., Kessel, R., Kokubun, S., Lepping, R.P., Lin, R., Luhr, H., McEntire, R.W., Meng, C.I., Mukai, T., Nemecek, Z., Parks, G., Phan, T.D., Romanov, S.A., Safrankova, J., Sauvaud, J.A., Singer, H.J., Solovyev, S.I., Szabo, A., Takahashi, K., Williams, D.J., Yumoto, K., Zastenker, G.N.: Comprehensive study of the magnetospheric response to a hot flow anomaly. J. Geophys. Res.-Space 104(A3), 4577–4593 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    Sibeck, D.G., Kudela, K., Mukai, T., Nemecek, Z., Safrankova, J.: Radial dependence of foreshock cavities: a case study. Ann. Geophys.-Germany 22(12), 4143–4151 (2004)ADSGoogle Scholar
  32. 32.
    Smith, M.F., Owen, C.J.: Temperature anisotropies in a magnetospheric Fte. Geophys. Res. Lett. 19(19), 1907–1910 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    Smith, M.F., Rodgers, D.J.: Ion distributions at the dayside magnetopause. J. Geophys. Res.-Space 96(A7), 11617–11624 (1991)ADSCrossRefGoogle Scholar
  34. 34.
    Spanswick, E., Reeves, G.D., Donovan, E., Friedel, R.H.W.: Injection region propagation outside of geosynchronous orbit. J. Geophys. Res.-Space 115, A11214 (2010). doi: 10.1029/2009ja015066 ADSCrossRefGoogle Scholar
  35. 35.
    Thomsen, M.F., Stansberry, J.A., Bame, S.J., Fuselier, S.A., Gosling, J.T.: Ion and electron velocity distributions within flux-transfer events. J. Geophys. Res.-Space 92(A11), 12127–12136 (1987)ADSCrossRefGoogle Scholar
  36. 36.
    Trattner, K.J., Mulcock, J.S., Petrinec, S.M., Fuselier, S.A.: Probing the boundary between antiparallel and component reconnection during southward interplanetary magnetic field conditions. J. Geophys. Res.-Space 112(A8), A08210 (2007). doi: 10.1029/2007ja012270 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Christopher J. Owen
    • 1
    Email author
  • Olaf Amm
    • 2
  • Roberto Bruno
    • 3
  • Johan De Keyser
    • 4
  • Malcolm W. Dunlop
    • 5
  • Jonathan P. Eastwood
    • 6
  • Andrew N. Fazakerley
    • 1
  • Dominique Fontaine
    • 7
  • Colin Forsyth
    • 1
  • Hiroshi Hasegawa
    • 8
  • Petr Hellinger
    • 9
  • David Hercik
    • 9
  • Christian Jacquey
    • 10
  • Steven Milan
    • 11
  • Joachim Raeder
    • 12
  • David G. Sibeck
    • 13
  • Stepan Stverak
    • 9
  • Pavel Travnicek
    • 9
    • 14
  • Andrew P. Walsh
    • 1
  • James A. Wild
    • 15
  1. 1.Mullard Space Science LaboratoryUniversity College LondonSurreyUK
  2. 2.Arctic Research UnitFinnish Meteorological InstituteHelsinkiFinland
  3. 3.INAF-IFSIRomeItaly
  4. 4.Institute for Space AeronomyBrusselsBelgium
  5. 5.Space Sciences DivisionRutherford Appleton LaboratoryOxfordshireUK
  6. 6.The Blackett LaboratoryImperial CollegeLondonUK
  7. 7.Laboratoire de Physique des PlasmasEcole PolytechniqueVélizyFrance
  8. 8.Institute of Space and Astronautical Science (ISAS)KanagawaJapan
  9. 9.Academy of Sciences of the Czech RepublicPragueCzech Republic
  10. 10.Institut de Recherche en Astrophysique et Planetologie (IRAP)ToulouseFrance
  11. 11.Radio and Space Plasmas GroupUniversity of LeicesterLeicesterUK
  12. 12.Space Science CenterUniversity of New HampshireDurhamUSA
  13. 13.NASA/Goddard Space Flight CenterGreenbeltUSA
  14. 14.University of California at BerkeleyBerkeleyUSA
  15. 15.University of LancasterLancasterUK

Personalised recommendations