Experimental Astronomy

, Volume 33, Issue 2–3, pp 337–363 | Cite as

EnVision: taking the pulse of our twin planet

  • Richard C. GhailEmail author
  • Colin Wilson
  • Marina Galand
  • David Hall
  • Chris Cochrane
  • Philippa Mason
  • Joern Helbert
  • Franck MontMessin
  • Sanjay Limaye
  • Manish Patel
  • Neil Bowles
  • Daphne Stam
  • Jan-Erik Wahlund
  • Fabio Rocca
  • David Waltham
  • Tamsin A. Mather
  • Juliet Biggs
  • Matthew Genge
  • Philippe Paillou
  • Karl Mitchell
  • Lionel Wilson
  • Upendra N. Singh
Original Article


EnVision is an ambitious but low-risk response to ESA’s call for a medium-size mission opportunity for a launch in 2022. Venus is the planet most similar to Earth in mass, bulk properties and orbital distance, but has evolved to become extremely hostile to life. EnVision’s 5-year mission objectives are to determine the nature of and rate of change caused by geological and atmospheric processes, to distinguish between competing theories about its evolution and to help predict the habitability of extrasolar planets. Three instrument suites will address specific surface, atmosphere and ionosphere science goals. The Surface Science Suite consists of a 2.2 m2 radar antenna with Interferometer, Radiometer and Altimeter operating modes, supported by a complementary IR surface emissivity mapper and an advanced accelerometer for orbit control and gravity mapping. This suite will determine topographic changes caused by volcanic, tectonic and atmospheric processes at rates as low as 1 mm a − 1. The Atmosphere Science Suite consists of a Doppler LIDAR for cloud top altitude, wind speed and mesospheric structure mapping, complemented by IR and UV spectrometers and a spectrophotopolarimeter, all designed to map the dynamic features and compositions of the clouds and middle atmosphere to identify the effects of volcanic and solar processes. The Ionosphere Science Suite uses a double Langmiur probe and vector magnetometer to understand the behaviour and long-term evolution of the ionosphere and induced magnetosphere. The suite also includes an interplanetary particle analyser to determine the delivery rate of water and other components to the atmosphere.


Venus tectonics Venus atmosphere Venus ionosphere InSAR LIDAR 



The authors would like to thank ESA for their thorough evaluation of this proposed mission and the valuable feedback provided.

Dr Mitchell’s was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.


  1. 1.
    Anderson, F.S., Smrekar, S.E.: Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res. 111, E08006 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Baker, V.R., Komatsu, G., Parker, T.J., Gulick, V.C., Kargel, J.S., Lewis, J.S.: Channels and valleys on Venus: Preliminary analysis of Magellan data. J. Geophys. Res. 97, 13421–13444 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    Barabash, S., Fedorov, A., Sauvaud, J.A., Lundin, R., Russell, C.T., Futaana, Y., Zhang, T.L., Andrersson, H., Brinkfeldt, K., Grigoriev, A., Holmstrom, M., Yamauchi, M., Asamura, K., Baumjohann, W., Lammer, H., Coates, A.J., Kataria, D.O., Linder, D.R., Curtis, C.C., Hsieh, K.C., Sandel, B.R., Grande, M., Gunell, H., Koskinen, H.E.J., Kallio, E., Riihela, P., Sales, T., Schmidt, W., Kozyra, J., Krupp, N., Franz, M., Woch, J., Luhmann, J., McKenna-Lawlor, S., Mazelle, C., Thocaven, J.-J., Orsini, S., Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E., Brandt, P., Szego, K., Winningham, J.D., Frahm, R.A., Scherrer, J., Sharber, J.R., Wurz, P., Bochsler, P.: The loss of ions from Venus through the plasma wake. Nature 450, 650–653 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Brace, L.H., Kasprzak, W.T., Taylor, H.A., Theis, R.F., Russell, C.T., Barnes, A., Mihalov, J.D., Hunten, D.M.: The ionotail of Venus: Its configuration and evidence for ion escape. J. Geophys. Res. 92, 15–26 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    Basilevsky, A.T., Head, J.W.: The geologic history of Venus: A stratigraphic view. J. Geophys. Res. 103, 8531 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    Basilevsky, A.T., Head, J.W.: Rifts and large volcanoes of Venus: global assessment of their age relations with regional plains. J. Geophys. Res. 105, 24583 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Biggs, J., Bergman, E., Emmerson, B., Funning, G., Jackson, J., Parsons, B., Wright, T.: Fault identification for buried strike-slip earthquakes using InSAR: the 1994 and 2004 Al Hoceima, Morocco earthquakes. Geophys. J. Int. 166, 1347–1362 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Bondarenko, N.V., Head, J.W., Ivanov, M.A.: Present-day volcanism on Venus: evidence from microwave radiometry. Geophys. Res. Lett. 37, 23202 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Bullock, M.A., Grinspoon, D.H.: The stability of climate on Venus. J. Geophys. Res. 101, 7521 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Campbell, B.A.: Surface formation rates and impact crater densities on Venus. J. Geophys. Res. 104, 21951 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    Carter, L.M., Campbell, D.B., Campbell, B.A.: Impact crater related surficial deposits on Venus: Multipolarization radar observations with Arecibo. J. Geophys. Res. 109, 06009 (2004)CrossRefGoogle Scholar
  12. 12.
    Chang, Wu-L., Smith, R.B., Wicks, C., Farrell, J.M., Puskas, C.M.: Accelerated uplift and magmatic intrusion of the Yellowstone caldera, 2004 to 2006. Science 318, 952–956 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Christophe, B., Foulon, B., Levy, A., Anderson, J.D., Sumner, T.J., Bertolami, O., Gil, P., Páramos, J., Progrebenko, S.V., Gurtvis, L., Reynaud, S., Courty, J.-M., Asmar, S.W., Métris, G., Bério, P., Bingham, R., Kent, B., Olsen, O., Andersen, P.H., Dittus, H., Lämmerzahl, K., Theil, S., Rievers, B., Bremer, S.: Gravity advanced package, an accelerometer package for Laplace or tandem missions. In: Charbonnel, C., Combes, F., Samadi, R. (eds.) Proceedings of theAnnual meeting of the French Society of Astronomy and Astrophysics. SF2A, pp. 103–106. (2008)Google Scholar
  14. 14.
    Ebmeier, S.K., Biggs, J., Mather, T.A., Wadge, G.: Steady downslope movement on the western flank of Arenal Volcano, Costa Rica. Geochem. Geophys. Geosystems. 11, 12004 (2010). doi: 10.1029/2010GC003263 ADSCrossRefGoogle Scholar
  15. 15.
    Esposito, L.W.: Long term changes in Venus sulfur dioxide. Adv. Space Res. 5, 85–90 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    Florensky, C.P., Basilevsky, A.T., Kryuchkov, V.P., Kusmin, R.O., Nikolaeva, O.V., Pronin, A.A., Chernaya, I.M., Tyuflin, Y.S., Selivanov, A.S., Naraeva, M.K., Ronca, L.B.: Venera 13 and Venera 14: sedimentary rocks on Venus? Science 221, 57–59 (1983). doi: 10.1126/science.221.4605.57 ADSCrossRefGoogle Scholar
  17. 17.
    Ford, P.G., Pettengill, G.H.: Venus topography and kilometer-scale slopes. J. Geophys. Res. 97, 13103–13114 (1992)ADSCrossRefGoogle Scholar
  18. 18.
    Fournier, T.J., Pritchard, M.E., Riddick, S.N.: Duration, magnitude, and frequency of subaerial volcano deformation events: new results from Latin America using InSAR and a global synthesis. Geochem. Geophys. Geosystems. 11, Q01003, 29 (2010). doi: 10.1029/2009GC002558 CrossRefGoogle Scholar
  19. 19.
    Fox, J.L.: Morphology of the dayside ionosphere of Venus: implications for ion outflows. J. Geophys. Res. 113, E11001 (2008). doi: 10.1029/2008JE003182 ADSCrossRefGoogle Scholar
  20. 20.
    Ghail, R.C.: Structure and evolution of southeast Thetis Regio. J. Geophys. Res. 107, 5060 (2002)CrossRefGoogle Scholar
  21. 21.
    Gilmore, M.S., Collins, G.C., Ivanov, M.A., Marinangeli, L., Head, J.W.: Style and sequence of extensional structures in tessera terrain, Venus. J. Geophys. Res. 103, 16813 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    Grün, E., Zook, H.A., Baguhl, M., Balogh, A., Bame, S.J., Fechtig, H., Forsyth, R., Hanner, M.S., Horanyi, M., Kissel, J., Lindblad, B.A., Linkert, D., Linkert, G., Mann, I., McDonnell, J.A.M., Morfill, G.E., Phillips, J.L., Polanskey, C., Schwehm, G., Siddque, N., Staubach, P., Svestka, J., Taylor, A.: Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    Guest, J.E., Stofan, E.R.: A new view of the stratigraphic history of Venus. Icarus 139, 55 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    Hansen, J.E., Hovenier, J.W.: Interpretation of the polarization of Venus. J. Atmos. Sci. 31, 1137–1160 (1974)ADSCrossRefGoogle Scholar
  25. 25.
    Hashimoto, G.L., Imamura, T.: Elucidating the rate of volcanism on Venus: detection of lava eruptions using near-infrared observations. Icarus. 154, 239 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Johnson, C.L., Richards, M.A.: A conceptual model for the relationship between coronae and large-scale mantle dynamics on Venus. J. Geophys. Res. 108, 5058 (2003)CrossRefGoogle Scholar
  27. 27.
    Jones, A.P., Pickering, K.: Evidence for aqueous fluid – sediment transport and erosional processes on Venus. J. Geol. Soc. London. 160, 319–327 (2003)CrossRefGoogle Scholar
  28. 28.
    Komatsu, G., Baker, V.R.: Meander properties of Venusian channels. Geology 22, 67 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    Komatsu, G., Gulick, V.C., Baker, V.R.: Valley networks on Venus. Geomorph. 37(3–4), 225–240 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Kovacs, T.A., Mccormick, M.P.: Observations of typhoon Melissa during the Lidar In-space Technology Experiment (LITE). J. Appl. Med. 42, 1003–1013 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    Kumar, P.: An alternative kinematic interpretation of Thetis boundary shear zone, Venus: evidence for strike-slip ductile duplexes. J. Geophys. Res. 110, 07001 (2005)CrossRefGoogle Scholar
  32. 32.
    Lammer, H., Lichtenegger, H.I.M., Biernat, H.K., Erkaev, N.V., Arshukova, I.L., Kolb, C., Gunell, H., Lukyanov, A., Holmstrom, M., Barabash, S., Zhang T.L., Baumjohann W.: Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54(13–14),1445–1456 (2006)Google Scholar
  33. 33.
    Limaye, S.S., Markiewicz, W.J., Titov, D.V.: A bright spot on Venus. EGU abtracts, 2010EGUGA.1211468L (2010)Google Scholar
  34. 34.
    Luhmann, J.G., Kasprzak, W.T., Russell, C.T.: Space weather at Venus and its potential consequences for atmospheric evolution. J. Geophys. Res. 112, E04S10 (2007). doi: 10.1029/2006JE002820 ADSCrossRefGoogle Scholar
  35. 35.
    Marcq, E., Belyaev, D., Montmessin, F., Fedorova, A., Bertaux, J.-L., Vandaele, A.C., Neefs, E.: An investigation of the SO2 content of the Venusian mesosphere using SPICAV-UV in nadir mode. Icarus 211, 58–69 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    Marinangeli, L., Gilmore, M.S.: Geologic evolution of the Akna Montes-Atropos Tessera region, Venus. J. Geophys. Res. 105, 12053 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    Markiewicz, W., Titov, D., Limaye, S., Keller, H., Ignatiev, N., Jaumann, R., Thomas, N., Michalik, H., Moissl, R., Russo, P.: Morphology and dynamics of the upper cloud layer of Venus. Nature 450, 633 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    McComas, D.J., Spence, H.E., Russell, C.T., Saunders, M.A.: The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res. 91, 7939–7953 (1986)ADSCrossRefGoogle Scholar
  39. 39.
    Müller, N., Helbert, J., Hashimoto, G., Tsang, C., Erard, S., Piccioni, G., Drossart, P.: Venus surface thermal emission at 1 μm in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J. Geophys. Res. 113, 1–21 (2008)CrossRefGoogle Scholar
  40. 40.
    Nimmo, F., McKenzie, D.: Volcanism and tectonics on Venus. Ann. Rev. Earth Planet. Sci. 26, 23–51 (1998)ADSCrossRefGoogle Scholar
  41. 41.
    Phillips, J.L., Luhmann, J.G, Russell, C.T.: Dependence of Venus ionopause altitude and ionospheric magnetic field on solar wind dynamic pressure. Adv. Space Res. 5, 173–176 (1985)ADSCrossRefGoogle Scholar
  42. 42.
    Piccialli, A., Titov, D.V., Grassi, D., Khatuntsev, I., Drossart, P., Piccioni, G., Migliorini, A.: Cyclostrophic winds from the visible and infrared thermal imaging spectrometer temperature sounding: a preliminary analysis. J. Geophys. Res. 113, E00B11 (2008)CrossRefGoogle Scholar
  43. 43.
    Schubert, G., Sandwell, D.T.: A global survey of possible subduction sites on Venus. Icarus 117, 173–196 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    Smrekar, S.E., Stofan, E.R., Mueller, N., Treiman, A., Elkins-Tanton, L., Helbert, J., Piccioni, G., Drossart, P.: Recent hotspot volcanism on venus from VIRTIS emissivity data. Science 328, 605 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Snik F., Rietjens, J.H.H., van Harten, G., Stam, D.M., Keller, C.U., Smit, J.M., Laan, E.C., Verlaan, A.D., der Horst, R., Navarro, R., Wielinga, K., Moon, S.G., Voors, R.: SPEX: the spectropolarimeter for planetary exploration. In: Proc. SPIE 7731, 77311B (2010). doi: 10.1117/12.857941
  46. 46.
    Stevens, N.F., Wadge, G., Williams, C.A.: Post-emplacement lava subsidence and the accuracy of ERS InSAR digital elevation models of volcanoes. Int. J. Remote Sens. 22, 819–828 (2001)ADSCrossRefGoogle Scholar
  47. 47.
    Stofan, E.R., Brian, A.W., Guest, J.E.: Resurfacing styles and rates on Venus: assessment of 18 Venusian quadrangles. Icarus 173, 312–321 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Taylor, F., Grinspoon, D.: Climate evolution of Venus. J. Geophys. Res. 114, E00B40 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    Tuckwell, G., Ghail, R.C.: A 400-km-scale strike-slip zone near the boundary of Thetis Regio, Venus. Earth Planet. Sci. Lett. 211, 45–55 (2003)ADSCrossRefGoogle Scholar
  50. 50.
    Turcotte, D.: An episodic hypothesis for Venusian tectonics. J. Geophys. Res. 98, 17061–17068 (1993)ADSCrossRefGoogle Scholar
  51. 51.
    Turcotte, D.: How does Venus lose heat? J. Geophys. Res. 100, 16931 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    Turcotte, D., Morein, G., Roberts, D., Malamud, B.D.: Catastrophic resurfacing and episodic subduction on Venus. Icarus. 139, 49–54 (1999)ADSCrossRefGoogle Scholar
  53. 53.
    Waltham, D., Pickering, K., Bray, V.: Particulate gravity currents on Venus. J. Geophys. Res. 113, 02012 (2008)CrossRefGoogle Scholar
  54. 54.
    Wicks Jr, C., Thatcher, W., Dzurisin, D.: Migration of fluids beneath Yellowstone caldera inferred from satellite radar interferometry. Science 282, 458 (1998)ADSCrossRefGoogle Scholar
  55. 55.
    Zebker, H.A., Rosen, P.A., Goldstein, R.M., Gabriel, A., Werner, C.L.: On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake. J. Geophys. Res. 99, 19617 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Richard C. Ghail
    • 1
    Email author
  • Colin Wilson
    • 2
  • Marina Galand
    • 1
  • David Hall
    • 3
  • Chris Cochrane
    • 1
  • Philippa Mason
    • 1
  • Joern Helbert
    • 4
  • Franck MontMessin
    • 5
  • Sanjay Limaye
    • 6
  • Manish Patel
    • 7
  • Neil Bowles
    • 2
  • Daphne Stam
    • 8
  • Jan-Erik Wahlund
    • 9
  • Fabio Rocca
    • 10
  • David Waltham
    • 11
  • Tamsin A. Mather
    • 12
  • Juliet Biggs
    • 13
  • Matthew Genge
    • 1
  • Philippe Paillou
    • 14
  • Karl Mitchell
    • 15
  • Lionel Wilson
    • 16
  • Upendra N. Singh
    • 17
  1. 1.Imperial College LondonLondonUK
  2. 2.University of OxfordOxfordUK
  3. 3.AstriumPortsmouthUK
  4. 4.DLRBerlinDeutschland
  5. 5.LATMOSParisFrance
  6. 6.University of Wisconsin-MadisonMadisonUSA
  7. 7.Open UniversityMilton KeynesUK
  8. 8.SRON Netherlands Institute for Space ResearchUtrechtNetherlands
  9. 9.Swedish Institute of Space PhysicsUppsala UniversityUppsalaSweden
  10. 10.Politecnico di MilanoMilanItaly
  11. 11.Royal HollowayUniversity of LondonEghamUK
  12. 12.University of OxfordOxfordUK
  13. 13.University of BristolBristolUK
  14. 14.University of BordeauxFloiracFrance
  15. 15.Jet Propulsion Laboratory, California Institute of TechnologyPasadenaUSA
  16. 16.Lancaster UniversityLancasterUK
  17. 17.NASA Langley Research CenterHamptonUSA

Personalised recommendations