Experimental Astronomy

, Volume 33, Issue 2–3, pp 403–443

AXIOM: advanced X-ray imaging of the magnetosphere

  • Graziella Branduardi-Raymont
  • Steve F. Sembay
  • Jonathan P. Eastwood
  • David G. Sibeck
  • Tony A. Abbey
  • Patrick Brown
  • Jenny A. Carter
  • Chris M. Carr
  • Colin Forsyth
  • Dhiren Kataria
  • Steve Kemble
  • Steve E. Milan
  • Chris J. Owen
  • Lisa Peacocke
  • Andy M. Read
  • Andrew J. Coates
  • Michael R. Collier
  • Stan W. H. Cowley
  • Andrew N. Fazakerley
  • George W. Fraser
  • Geraint H. Jones
  • Rosine Lallement
  • Mark Lester
  • F. Scott Porter
  • Tim K. Yeoman
Original Article
  • 160 Downloads

Abstract

Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission.

Keywords

X-rays Space telescope Space plasma instrumentation Magnetometer Techniques Imaging Spectroscopy Plasma and field analysers 

References

  1. 1.
    Aguilar-Rodriguez, E., Blanco-Cano, X., Gopalswamy, N.: Composition and magnetic structure of interplanetary coronal mass ejections at 1 AU. Adv. Space Res. 38, 522–527 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    Bodewits, D., Christian, D.J., Torney, M., Dryer, M., Lisse, C.M., Dennerl, K., Zurbuchen, T.H., Wolk, S.J., Tielens, A.G.G.M., Hoekstra, R.: Spectral analysis of the Chandra comet survey. Astron. Astrophys. 469, 1183–1195 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    Brandt, P.C., Mitchell, D.G., Ebihara, Y., Sandel, B.R., Roelof, E.C., Burch, J.L., Demajistre, R.: Global IMAGE//HENA observations of the ring current: examples of rapid response to IMF and ring current-plasmasphere interaction. J. Geophys. Res. 107, 1359–1370 (2002)CrossRefGoogle Scholar
  4. 4.
    Cai, C.L., Dandouras, I., Rème H., Cao, J.B., Zhou, G.C., Shen, C., Parks, G.K., Fontaine, D.: Magnetosheath excursion and the relevant transport process at the magnetopause. Ann. Geophys. 27, 2997–3005 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Carter, J.A., Sembay, S., Read, A.M.: A high charge state coronal mass ejection seen through solar wind charge exchange emission as detected by XMM-Newton. Mon. Not. R. Astron. Soc. 402, 867–878 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    Carter, J.A., Sembay, S., Read, A.M.: Identifying XMM-Newton observations affected by solar wind charge exchange – part II. Astron. Astrophys. 527, 115–130 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    Cravens, T.E.: Comet Hayakutake X-ray source: charge transfer of solar wind heavy ions. Geophys. Res. Lett. 24, 105–108 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Dennerl, K.: Charge transfer reactions. Space Sci. Rev. 157, 57–91 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Dennerl, K.: High resolution X-ray spectroscopy of comets. In: Proceedings of the ‘High resolution X-ray spectroscopy workshop’. Mullard Space Science Laboratory, 19–20 March 2009. (http://www.mssl.ucl.ac.uk/~gbr/workshop3/papers/comets_mssl_2009_kd.pdf)
  10. 10.
    Dunlop, M.W., Taylor, M.G.G.T., Bogdanova, Y.V., Shen, C., Pitout, F., Pu, Z., Davies, J.A., and other 12 authors: Electron structure of the magnetopause boundary layer: cluster/double star observations. J. Geophys. Res. 113, A07S19–A07S39 (2008)CrossRefGoogle Scholar
  11. 11.
    Ezoe, Y., Ebisawa, K., Yamasaki, N.Y., Mitsuda, K., Yoshitake, H., Terada, N., Miyoshi, Y., Fujimoto, R.: Time variability of the geocoronal solar-wind charge exchange in the direction of the celestial equator. Publ. Astron. Soc. Jpn. 62, 981–986 (2010)ADSGoogle Scholar
  12. 12.
    Fairfield, D.H.: Average and unusual locations for the earth’s magnetopause and bow shock. J. Geophys. Res. 76, 6700–6716 (1971)ADSCrossRefGoogle Scholar
  13. 13.
    Fairfield, D.H., Cairns, I.H., Desch, M.D., Szabo, A., Lazarus, A.J., Aellig, M.R.: The location of low Mach number bow shocks at earth. J. Geophys. Res. 106, 25361–25376 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    Farris, M.H., Petrinec, S.M., Russell, C.T.: The thickness of the magnetosheath - constraints on the polytropic index. Geophys. Res. Lett. 18, 1821–1824 (1991)ADSCrossRefGoogle Scholar
  15. 15.
    Fritz, T.A., Zong, Q.G.: The magnetospheric cusps: a summary. Surv. Geophys. 26, 409–414 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    Fujimoto, R., Mitsuda, K., McCammon, D., Takei, Y., Bauer, M., Ishisaki, Y., Porter, F.S., Yamaguchi, H., Hayashida, K., Yamasaki, N.Y.: Evidence for solar-wind charge-exchange X-ray emission from the earth’s magnetosheath. Publ. Astron. Soc. Jpn. 59, S133–S140 (2007)ADSGoogle Scholar
  17. 17.
    Fuselier, S.A., Funsten, H.O., Heirtzler, D., Janzen, P., Kucharek, H., McComas, D.J., Möbius, E., and other 6 authors: Energetic neutral atoms from the earth’s subsolar magnetopause. Geophys. Res. Lett. 37, 13101–13105 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Green, J.L., Reinisch, B.W.: An overview of results from RPI on IMAGE. Space Sci. Rev. 109, 183–210 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    Hsieh, K.C., Shih, K.L., Jokipii, J.R., Grzedzielski, S.: Probing the heliosphere with energetic hydrogen atoms. Astrophys. J. 393, 756–763 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    Hudson, M.K., Kress, B.T., Mazur, J.E., Perry, K.L., Slocum, P.L.: 3D modeling of shockinduced trapping of solar energetic particles in the Earth’s magnetosphere. J. Atmos. Sol.-Terr. Phys. 66, 1389–1397 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Kuntz, K.D., Snowden, S.L.: The EPIC-MOS particle-induced background spectra. Astron. Astrophys. 478, 575–596 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Lisse, C.M., and 11 co-authors: Discovery of X-ray and extreme ultraviolet emission from comet C/Hyakutake. Science 274, 205–209 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    Lucek, E.A., Constantinescu, D., Goldstein, M.L., Pickett, J., Pincon, J.L., Sahraoui, F., Treumann, R.A., Walker, S.N.: The magnetosheath. Space Sci. Rev. 118, 95–152 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Lucek, E.A., Horbury, T.S., Dandouras, I., Rème, H.: Cluster observations of the Earth’s quasi-parallel bow shock. J. Geophys. Res. 113, A07S02–A07S12 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    Lumb, D.H., Warwick, R.S., Page, M., De Luca, A.: X-ray background measurements with XMM-Newton EPIC. Astron. Astrophys. 389, 93–105 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Mariani, F., Bavassano, B., Villante, U., Ness, N.F.: Variations of the occurrence rate of discontinuities in the interplanetary magnetic field. J. Geophys. Res. 78, 8011–8022 (1973)ADSCrossRefGoogle Scholar
  27. 27.
    Milan, S.E., Lester, M., Cowley, S.W.H., Oksavik, K., Brittnacher, M., Greenwald, R.A., Sofko, G., Villain, J.-P.: Variations in the polar cap area during two substorm cycles. Ann. Geophys. 21, 1121–1140 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Mitchell, D.G., Brandt, P.C., Roelof, E.C., Hamilton, D.C., Retterer, K.C., Mende, S.: Global imaging of O+ from IMAGE/HENA. Space Sci. Rev. 109, 63–75 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    Østgaard, N., Mende, S.B., Frey, H.U., Gladstone, G.R., Lauche, H.: Neutral hydrogen density profiles derived from geocoronal imaging. J. Geophys. Res. 108, 1300 (2003)CrossRefGoogle Scholar
  30. 30.
    Petrinec, S.P., Song, P., Russell, C.T.: Solar cycle variations in the size and shape of the magnetopause. J. Geophys. Res. 96, 7893–7896 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    Rijnbeek, R.P., Cowley, S.W.H., Southwood, D.J., Russell, C.T.: A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers. J. Geophys. Res. 89, 786–800 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    Robertson, I.P., Cravens, T.E.: X-ray emission from the terrestrial magnetosheath. Geophys. Res. Lett. 30(8), 1439–1442 (2003a)ADSCrossRefGoogle Scholar
  33. 33.
    Robertson, I.P., Cravens, T.E.: Spatial maps of heliospheric and geocoronal X-ray intensities due to the charge exchange of the solar wind with neutrals. J. Geophys. Res. 108(A10), 8031–8040 (2003b)CrossRefGoogle Scholar
  34. 34.
    Robertson, I.P., Collier, M.R., Cravens, T.E., Fok, M.-C.: X-ray emission from the terrestrial magnetosheath including the cusps. J. Geophys. Res. 111, A12105–A12112 (2006)CrossRefGoogle Scholar
  35. 35.
    Roelof, E.C.: Remote sensing of the ring current using energetic neutral atoms. Adv. Space Res. 9, 195–203 (1989)ADSCrossRefGoogle Scholar
  36. 36.
    Roelof, E.C., Sibeck, D.G.: Erratum: Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure. J. Geophys. Res. 99, 8787–8788 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    Russell, C.T., Elphic, R.C.: Initial ISEE magnetometer results – magnetopause observations. Space Sci. Rev. 22, 681–715 (1978)ADSCrossRefGoogle Scholar
  38. 38.
    Sandel, B.R., Goldstein, J., Gallagher, D.L., Spasojevic, M.: Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere. Space Sci. Rev. 109, 25–46 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    Snowden, S.L., Collier, M.R., Kuntz, K.D.: XMM-Newton observation of solar wind charge exchange emission. Astrophys. J. 610, 1182–1190 (2004)ADSCrossRefGoogle Scholar
  40. 40.
    Snowden, S.L., Collier, M.R., Cravens, T., Kuntz, K.D., Lepri, S.T., Robertson, I., Tomas, L.: Observation of solar wind charge exchange emission from exospheric material in and outside Earth’s magnetosheath 2008 September 25. Astrophys. J. 691, 372–381 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    Strüder, L., and 57 co-authors: The European photon imaging camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365, L18–L26 (2001)CrossRefGoogle Scholar
  42. 42.
    Vallat, C., and 11 co-authors: First comparisons of local ion measurements in the inner magnetosphere with energetic neutral atom magnetospheric image inversions: cluster-CIS and IMAGE-HENA observations. J. Geophys. Res. 109, A04213–A04222 (2004)CrossRefGoogle Scholar
  43. 43.
    Wang, Y.L., Raeder, J., Russell, C.: Plasma depletion layer: its dependence on solar wind conditions and the earth dipole tilt. Ann. Geophys. 22, 4273–4290 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    Wargelin, B.J., Markevitch, M., Juda, M., Kharchenko, V., Edgar, R., Dalgarno, A.: Chandra observations of the dark moon and geocoronal solar wind charge transfer. Astrophys. J. 607, 596–610 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    Young, D.T., and 29 co-authors: Plasma experiment for planetary exploration (PEPE). Space Sci. Rev. 129, 327–357 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    Zong, Q.-G., Zhang, H., Fu, S.Y., Wang, Y.F., Pu, Z.Y., Korth, A., Daly, P.W., Fritz, T.A.: Ionospheric oxygen ions dominant bursty bulk flows: cluster and double star observations. J. Geophys. Res. 113, A01210–A01220 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Graziella Branduardi-Raymont
    • 1
  • Steve F. Sembay
    • 2
  • Jonathan P. Eastwood
    • 3
  • David G. Sibeck
    • 4
  • Tony A. Abbey
    • 2
  • Patrick Brown
    • 3
  • Jenny A. Carter
    • 2
  • Chris M. Carr
    • 3
  • Colin Forsyth
    • 1
  • Dhiren Kataria
    • 1
  • Steve Kemble
    • 5
  • Steve E. Milan
    • 2
  • Chris J. Owen
    • 1
  • Lisa Peacocke
    • 5
  • Andy M. Read
    • 2
  • Andrew J. Coates
    • 1
  • Michael R. Collier
    • 4
  • Stan W. H. Cowley
    • 2
  • Andrew N. Fazakerley
    • 1
  • George W. Fraser
    • 2
  • Geraint H. Jones
    • 1
  • Rosine Lallement
    • 6
  • Mark Lester
    • 2
  • F. Scott Porter
    • 4
  • Tim K. Yeoman
    • 2
  1. 1.Mullard Space Science LaboratoryUniversity College LondonDorkingUK
  2. 2.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  3. 3.Blackett LaboratoryImperial College LondonLondonUK
  4. 4.NASA Goddard Space Flight CenterGreenbeltUSA
  5. 5.Astrium LtdStevenageUK
  6. 6.LATMOS/Institute Pierre Simon LaplaceParisFrance

Personalised recommendations