Experimental Astronomy

, Volume 34, Issue 2, pp 519–549 | Cite as

ORIGIN: metal creation and evolution from the cosmic dawn

  • Jan-Willem den Herder
  • Luigi Piro
  • Takaya Ohashi
  • Chryssa Kouveliotou
  • Dieter H. Hartmann
  • Jelle S. Kaastra
  • L. Amati
  • M. I. Andersen
  • M. Arnaud
  • J. -L. Attéia
  • S. Bandler
  • M. Barbera
  • X. Barcons
  • S. Barthelmy
  • S. Basa
  • S. Basso
  • M. Boer
  • E. Branchini
  • G. Branduardi-Raymont
  • S. Borgani
  • A. Boyarsky
  • G. Brunetti
  • C. Budtz-Jorgensen
  • D. Burrows
  • N. Butler
  • S. Campana
  • E. Caroli
  • M. Ceballos
  • F. Christensen
  • E. Churazov
  • A. Comastri
  • L. Colasanti
  • R. Cole
  • R. Content
  • A. Corsi
  • E. Costantini
  • P. Conconi
  • G. Cusumano
  • J. de Plaa
  • A. De Rosa
  • M. Del Santo
  • S. Di Cosimo
  • M. De Pasquale
  • R. Doriese
  • S. Ettori
  • P. Evans
  • Y. Ezoe
  • L. Ferrari
  • H. Finger
  • T. Figueroa-Feliciano
  • P. Friedrich
  • R. Fujimoto
  • A. Furuzawa
  • J. Fynbo
  • F. Gatti
  • M. Galeazzi
  • N. Gehrels
  • B. Gendre
  • G. Ghirlanda
  • G. Ghisellini
  • M. Gilfanov
  • P. Giommi
  • M. Girardi
  • J. Grindlay
  • M. Cocchi
  • O. Godet
  • M. Guedel
  • F. Haardt
  • R. den Hartog
  • I. Hepburn
  • W. Hermsen
  • J. Hjorth
  • H. Hoekstra
  • A. Holland
  • A. Hornstrup
  • A. van der Horst
  • A. Hoshino
  • J. in ’t Zand
  • K. Irwin
  • Y. Ishisaki
  • P. Jonker
  • T. Kitayama
  • H. Kawahara
  • N. Kawai
  • R. Kelley
  • C. Kilbourne
  • P. de Korte
  • A. Kusenko
  • I. Kuvvetli
  • M. Labanti
  • C. Macculi
  • R. Maiolino
  • M. Mas Hesse
  • K. Matsushita
  • P. Mazzotta
  • D. McCammon
  • M. Méndez
  • R. Mignani
  • T. Mineo
  • K. Mitsuda
  • R. Mushotzky
  • S. Molendi
  • L. Moscardini
  • L. Natalucci
  • F. Nicastro
  • P. O’Brien
  • J. Osborne
  • F. Paerels
  • M. Page
  • S. Paltani
  • K. Pedersen
  • E. Perinati
  • T. Ponman
  • E. Pointecouteau
  • P. Predehl
  • S. Porter
  • A. Rasmussen
  • G. Rauw
  • H. Röttgering
  • M. Roncarelli
  • P. Rosati
  • E. Quadrini
  • O. Ruchayskiy
  • R. Salvaterra
  • S. Sasaki
  • K. Sato
  • S. Savaglio
  • J. Schaye
  • S. Sciortino
  • M. Shaposhnikov
  • R. Sharples
  • K. Shinozaki
  • D. Spiga
  • R. Sunyaev
  • Y. Suto
  • Y. Takei
  • N. Tanvir
  • M. Tashiro
  • T. Tamura
  • Y. Tawara
  • E. Troja
  • M. Tsujimoto
  • T. Tsuru
  • P. Ubertini
  • J. Ullom
  • E. Ursino
  • F. Verbunt
  • F. van de Voort
  • M. Viel
  • S. Wachter
  • D. Watson
  • M. Weisskopf
  • N. Werner
  • N. White
  • R. Willingale
  • R. Wijers
  • N. Yamasaki
  • K. Yoshikawa
  • S. Zane
Original Article

Abstract

ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant elements between C and Ni to red-shifts of z = 10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts (z ∼0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs. The ORIGIN mission includes a Transient Event Detector (coded mask with a sensitivity of 0.4 photon/cm2/s in 10 s in the 5–150 keV band) to identify and localize 2000 GRBs over a five year mission, of which ∼65 GRBs have a redshift >7. The Cryogenic Imaging Spectrometer, with a spectral resolution of 2.5 eV, a field of view of 30 arcmin and large effective area below 1 keV has the sensitivity to study clusters up to a significant fraction of the virial radius and to map the denser parts of the WHIM (factor 30 higher than achievable with current instruments). The payload is complemented by a Burst InfraRed Telescope to enable onboard red-shift determination of GRBs (hence securing proper follow up of high-z bursts) and also probes the mildly ionized state of the gas. Fast repointing is achieved by a dedicated Controlled Momentum Gyro and a low background is achieved by the selected low Earth orbit.

Keywords

X-ray Mission Gamma-ray bursts Clusters of galaxies Warm-hot intergalactic medium Chemical evolution 

Notes

Acknowledgements

The team likes to express its appreciation for the support of Astrium UK for the present study. Earlier studies, which also confirmed the feasibility of this concept were carried out by Thales/Alenia and NASA/MSFC.

References

  1. 1.
    Balestra, I., Tozzi, P., Ettori, S., Rosati, P., Borgani, S., Mainieri, V., Norman, C.: Evolution in the iron abundance of the ICM. P Th PS 169, 49 (2007)Google Scholar
  2. 2.
    Bastian, N., Covey, K.R., Meyer, M.R.: A universal stellar initial mass function? A critical look at variations. ARA&A 48, 339 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    Breeveld, A.A., Curran, P.A., Hoversten, E.A., et al.: Further calibration of the Swift ultraviolet/optical telescope. MNRAS 406, 1687 (2010)ADSGoogle Scholar
  4. 4.
    Branchini, E., Ursino, E., Corsi, A., et al.: Studying the warm hot intergalactic medium with gamma-ray bursts. ApJ 697, 328 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Borgani, S., Murante, G., Springel, V., et al.: X-ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation. MNRAS 348, 1078 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Bromm, V., Loeb, A.: GRB cosmology: probing the early universe. AIPC 937, 532 (2007)ADSGoogle Scholar
  7. 7.
    Butler, N.R., Bloom, J.S., Poznanski, D.: The cosmic rate, luminosity function, and intrinsic correlations of long gamma-ray bursts. ApJ 711, 495 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    Bykov, A.M., Paerels, F. B. S., Petrosian, V.: Equilibration processes in the warm-hot intergalactic medium. SSRv 134, 141 (2008)ADSGoogle Scholar
  9. 9.
    Campana, S., Romano, P., Covino, S., et al.: Evidence for intrinsic absorption in the Swift X-ray afterglows. A&A 449, 61 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Cen, R., Ostriker, J.P.: Where are the baryons? II. Feedback effects. ApJ 650, 560 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Chieffi, A., Limongi, M.: Explosive yields of massive stars from Z = 0 to Z = Zsolar. ApJ 608, 405 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    de Plaa, J., Werner, N., Bleeker, J.A.M., Vink, J., Kaastra, J.S., Méndez, M.: Constraining supernova models using the hot gas in clusters of galaxies. A&A 465, 345 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    Diemand, J., Kuhlen, M., Madau, P.: Clumps and streams in the local dark matter distribution. Nature 454, 735 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Gallerani, S., Salvaterra, R., Ferrara, A., Choudhury, T.R.: Testing reionization with gamma-ray burst absorption spectra. MNRAS 388, L84 (2008)ADSGoogle Scholar
  15. 15.
    Gottardi, L., et al.: Proc. ASC (2010, in press)Google Scholar
  16. 16.
    Greiner, J., Krühler, T., Klose, S., et al.: The nature of “dark” gamma-ray bursts. A&A 526, A30 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    Heger, A., Woosley, S.E.: Nucleosynthesis and evolution of massive metal-free stars. ApJ 724, 341 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    Jakobsson, P., Levan, A., Fynbo, J.P.U.: A mean redshift of 2.8 for Swift gamma-ray bursts. A&A 447, 897 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Kawai, N., Yamada, T., Kosugi, G., Hattori, T., Aoki, K.: GRB 050904: subaru optical spectroscopy. GCN 3937, 1 (2005)ADSGoogle Scholar
  20. 20.
    Kilbourne, C.A., Doriese, W.B., Bandler, S.R.: Multiplexed readout of uniform arrays of TES X-ray microcalorimeters suitable for constellation-X. Proc. SPIE. 7011, 701104 (2008)CrossRefGoogle Scholar
  21. 21.
    Loeb, A., Ferrara, A., Ellis, R.S.: First Light in the Universe. Springer (2008)Google Scholar
  22. 22.
    McCammon, D., Almy, R., Apodaca, E., et al.: A high spectral resolution observation of the soft x-ray diffuse background with thermal detectors. ApJ 576, 188 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    Natalucci, L.; Feroci, M.; Quadrini, E., et al.: Design of a CZT gamma-camera for GRB and fast transient follow-up: a wide-field-monitor for the EDGE mission. Proc. SPIE 6686, 66860T (2007)CrossRefGoogle Scholar
  24. 24.
    Nicastro, F., Zezas, A., Drake, J., et al.: Chandra discovery of a tree in the X-ray forest toward PKS 2155-304: the local filament? ApJ 573, 157 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Nomoto, K., Tominaga, N., Umeda, H., Kobayashi, C., Maeda, K.: Nucleosynthesis yields of core-collapse supernovae and hypernovae, and galactic chemical evolution. Nucl. Phys. A 777, 424 (2006). doi:10.1016/j.nuclphysa.2006.05.008 ADSCrossRefGoogle Scholar
  26. 26.
    Paerels, F.B.S., Kaastra, J., Ohashi, T., Richter, P., Bykov, A., Nevalainen, J.: Future instrumentation for the study of the warm-hot intergalactic medium. SSRv 134, 405 (2008)ADSGoogle Scholar
  27. 27.
    Schindler, S., Diaferio, A.: Metal enrichment processes. SSRv 134, 363 (2008)ADSGoogle Scholar
  28. 28.
    Salvaterra, R., Della Valle, M., Campana, S., et al.: GRB090423 at a redshift of z ~ 8.1. Nature 461, 1258 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    Schneider, R., Ferrara, A., Salvaterra, R., Omukai, K., Bromm, V.: Low-mass relics of early star formation. Nature 422, 869 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    Smith, S.J., Bandler, S.R., Brekosky, R.P., et al.: Development of position-sensitive transition-edge sensor x-ray detectors. IEEE Trans. Appl. Supercond. (2009). doi:10.1109/TASC.2009.2019557 Google Scholar
  31. 31.
    Snowden, S.L., Egger, R., Freyberg, M.J.: ROSAT survey diffuse x-ray background maps. II. ApJ 485, 125 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    Springel, V., Frenk, C.S., White, S.D.M.: The large-scale structure of the universe. Nature 440, 1137 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    Takei, Y., Ursino, E., Branchini, E., et al.: Studying the warm-hot intergalactic medium in emission. ApJ (2010). arXiv:1011.2116
  34. 34.
    Ursino, E., Branchini, E., Galeazzi, M., et al.: Expected properties of the two-point autocorrelation function of the IGM. MNRAS 413 (2010). doi:10.1111/j.1365-2966.2011.18597.x
  35. 35.
    Viel, M., Haehnelt, M.G., Springel, V.: Inferring the dark matter power spectrum from the Lyman α forest in high-resolution QSO absorption spectra. MNRAS 354, 684 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Werner, N., de Plaa, J., Kaastra, J.S.: XMM-Newton spectroscopy of the cluster of galaxies 2A 0335+096. A&A 449, 475 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Jan-Willem den Herder
    • 1
  • Luigi Piro
    • 2
  • Takaya Ohashi
    • 3
  • Chryssa Kouveliotou
    • 4
  • Dieter H. Hartmann
    • 5
  • Jelle S. Kaastra
    • 1
  • L. Amati
    • 6
  • M. I. Andersen
    • 7
  • M. Arnaud
    • 8
  • J. -L. Attéia
    • 9
  • S. Bandler
    • 10
  • M. Barbera
    • 11
  • X. Barcons
    • 12
  • S. Barthelmy
    • 10
  • S. Basa
    • 13
  • S. Basso
    • 14
  • M. Boer
    • 15
  • E. Branchini
    • 16
  • G. Branduardi-Raymont
    • 17
  • S. Borgani
    • 18
  • A. Boyarsky
    • 19
  • G. Brunetti
    • 20
  • C. Budtz-Jorgensen
    • 21
  • D. Burrows
    • 22
  • N. Butler
    • 23
  • S. Campana
    • 14
  • E. Caroli
    • 6
  • M. Ceballos
    • 12
  • F. Christensen
    • 21
  • E. Churazov
    • 24
  • A. Comastri
    • 25
  • L. Colasanti
    • 2
  • R. Cole
    • 17
  • R. Content
    • 26
  • A. Corsi
    • 2
  • E. Costantini
    • 1
  • P. Conconi
    • 14
  • G. Cusumano
    • 11
  • J. de Plaa
    • 1
  • A. De Rosa
    • 2
  • M. Del Santo
    • 2
  • S. Di Cosimo
    • 2
  • M. De Pasquale
    • 17
  • R. Doriese
    • 27
  • S. Ettori
    • 25
  • P. Evans
    • 28
  • Y. Ezoe
    • 3
  • L. Ferrari
    • 29
  • H. Finger
    • 30
  • T. Figueroa-Feliciano
    • 31
  • P. Friedrich
    • 32
  • R. Fujimoto
    • 33
  • A. Furuzawa
    • 34
  • J. Fynbo
    • 7
  • F. Gatti
    • 29
  • M. Galeazzi
    • 35
  • N. Gehrels
    • 10
  • B. Gendre
    • 2
  • G. Ghirlanda
    • 14
  • G. Ghisellini
    • 14
  • M. Gilfanov
    • 24
  • P. Giommi
    • 36
  • M. Girardi
    • 18
  • J. Grindlay
    • 37
  • M. Cocchi
    • 2
  • O. Godet
    • 38
  • M. Guedel
    • 39
  • F. Haardt
    • 40
  • R. den Hartog
    • 1
  • I. Hepburn
    • 17
  • W. Hermsen
    • 1
  • J. Hjorth
    • 7
  • H. Hoekstra
    • 41
  • A. Holland
    • 42
  • A. Hornstrup
    • 21
  • A. van der Horst
    • 4
  • A. Hoshino
    • 33
  • J. in ’t Zand
    • 1
  • K. Irwin
    • 27
  • Y. Ishisaki
    • 3
  • P. Jonker
    • 1
  • T. Kitayama
    • 43
  • H. Kawahara
    • 3
  • N. Kawai
    • 44
  • R. Kelley
    • 10
  • C. Kilbourne
    • 10
  • P. de Korte
    • 1
  • A. Kusenko
    • 45
  • I. Kuvvetli
    • 21
  • M. Labanti
    • 6
  • C. Macculi
    • 2
  • R. Maiolino
    • 46
  • M. Mas Hesse
    • 47
  • K. Matsushita
    • 48
  • P. Mazzotta
    • 49
  • D. McCammon
    • 50
  • M. Méndez
    • 51
  • R. Mignani
    • 17
  • T. Mineo
    • 11
  • K. Mitsuda
    • 52
  • R. Mushotzky
    • 53
  • S. Molendi
    • 54
  • L. Moscardini
    • 25
  • L. Natalucci
    • 2
  • F. Nicastro
    • 46
  • P. O’Brien
    • 28
  • J. Osborne
    • 28
  • F. Paerels
    • 55
  • M. Page
    • 17
  • S. Paltani
    • 56
  • K. Pedersen
    • 7
  • E. Perinati
    • 11
  • T. Ponman
    • 57
  • E. Pointecouteau
    • 38
  • P. Predehl
    • 32
  • S. Porter
    • 10
  • A. Rasmussen
    • 58
  • G. Rauw
    • 59
  • H. Röttgering
    • 41
  • M. Roncarelli
    • 60
  • P. Rosati
    • 61
  • E. Quadrini
    • 54
  • O. Ruchayskiy
    • 62
  • R. Salvaterra
    • 40
  • S. Sasaki
    • 3
  • K. Sato
    • 48
  • S. Savaglio
    • 32
  • J. Schaye
    • 41
  • S. Sciortino
    • 11
  • M. Shaposhnikov
    • 62
  • R. Sharples
    • 26
  • K. Shinozaki
    • 63
  • D. Spiga
    • 14
  • R. Sunyaev
    • 24
  • Y. Suto
    • 64
  • Y. Takei
    • 52
  • N. Tanvir
    • 28
  • M. Tashiro
    • 65
  • T. Tamura
    • 52
  • Y. Tawara
    • 34
  • E. Troja
    • 10
  • M. Tsujimoto
    • 52
  • T. Tsuru
    • 66
  • P. Ubertini
    • 2
  • J. Ullom
    • 27
  • E. Ursino
    • 16
  • F. Verbunt
    • 67
  • F. van de Voort
    • 41
  • M. Viel
    • 18
  • S. Wachter
    • 68
  • D. Watson
    • 7
  • M. Weisskopf
    • 4
  • N. Werner
    • 58
  • N. White
    • 10
  • R. Willingale
    • 28
  • R. Wijers
    • 69
  • N. Yamasaki
    • 52
  • K. Yoshikawa
    • 70
  • S. Zane
    • 17
  1. 1.SRON Netherlands Institute for Space ResearchUtrechtThe Netherlands
  2. 2.INAF-Istituto di Astrofisica Spaziale e Fisica CosmicaRomeItaly
  3. 3.Tokyo Metropolitan UniversityTokyoJapan
  4. 4.Marshall Space Flight CenterHuntsvilleUSA
  5. 5.Department of Physics and AstronomyClemson UniversityClemsonUSA
  6. 6.INAF-Istituto di Astrofisica Spaziale e Fisica CosmicaBolognaItaly
  7. 7.Dark Cosmology Centre, Niels Bohr InstituteUniversity of CopenhagenCopenhagenDenmark
  8. 8.Service d’AstrophysiqueCEA SaclayGif-sur-YvetteFrance
  9. 9.Observatoire Midi-PyrénéesLATToulouseFrance
  10. 10.NASA Goddard Space Flight CenterGreenbeltUSA
  11. 11.INAF-Istituto di Astrofisica SpazialePalermoItaly
  12. 12.IFCASantanderSpain
  13. 13.Observatoire de MarseilleMarseilleFrance
  14. 14.INAF, Osservatorio Astronomico BreraMilanItaly
  15. 15.Observatoire de Haute ProvenceHaute ProvenceFrance
  16. 16.Università Roma IIIRomeItaly
  17. 17.Mullard Space Science LaboratoryUniversity College of LondonLondonUK
  18. 18.INAF-Osservatorio AstronomicoTriesteItaly
  19. 19.CERNGenevaSwitzerland
  20. 20.INAF-IRABolognaItaly
  21. 21.DNSC/Technical University of DenmarkCopenhagenDenmark
  22. 22.Penn State UniversityPhiladelphiaUSA
  23. 23.University of CaliforniaBerkeleyUSA
  24. 24.Max-Planck-Insitut für AstrophysikMüchenFederal Republic of Germany
  25. 25.INAF-Osservatorio AstronomicoBolognaItaly
  26. 26.Durham UniversityDurhamUK
  27. 27.NISTBoulderUSA
  28. 28.Leicester UniversityLeicesterUK
  29. 29.Istituto Nazionale di Fisica NucleareGenovaItaly
  30. 30.University Space Research AssociationHuntsvileUSA
  31. 31.MITCambridgeUSA
  32. 32.Max-Planck-Institut für Extraterrestrische PhysikGarchingFederal Republic of Germany
  33. 33.Kanazawa UniversityKanazawaJapan
  34. 34.Nagoya UniversityAichiJapan
  35. 35.University of MiamiCoral GablesUSA
  36. 36.ASI Data CenterFrascatiItaly
  37. 37.CfAHarvard UniversityCambridgeUSA
  38. 38.CESR Centre d’Etude Spatiale des RayonnementsToulouseFrance
  39. 39.University of ViennaViennaAustria
  40. 40.University of InsubriaComoItaly
  41. 41.Leiden UniversityLeidenThe Netherlands
  42. 42.Open UniversityMilton KeynesUK
  43. 43.Toho UniversityChibaJapan
  44. 44.Tokyo Institute of TechnologyTokyoJapan
  45. 45.University of California at Los AngelesLos AngelesUSA
  46. 46.INAF-Osservatorio Astronomico di RomaRomeItaly
  47. 47.Centro de Astrobiología (CSIC-INTA)MadridSpain
  48. 48.Tokyo University of ScienceTokyoJapan
  49. 49.Universitá de Roma Tor VergataRomeItaly
  50. 50.University of WisconsinMadisonUSA
  51. 51.Groningen UniversityGroningenThe Netherlands
  52. 52.Institute of Space and Astronautical ScienceJAXAKanagawaJapan
  53. 53.University of MarylandCollege ParkUSA
  54. 54.INAF-Istituto di Astrofisica Spaziale e Fisica CosmicaMilanoItaly
  55. 55.Columbia UniversityColumbiaUSA
  56. 56.ISDCUniversity of GenevaVersoixSwitzerland
  57. 57.University of BirminghamBirminghamUK
  58. 58.KIPAC/StanfordPalo AltoUSA
  59. 59.Liege UniversityLiegeBelgium
  60. 60.University of BolognaBolognaItaly
  61. 61.ESOGarchingFederal Republic of Germany
  62. 62.Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
  63. 63.Aerospace, Research and Development DirectorateJAXAIbarakiJapan
  64. 64.University of TokyoTokyoJapan
  65. 65.Saitama UniversitySaitamaJapan
  66. 66.Kyoto UniversityKyotoJapan
  67. 67.Utrecht UniversityUtrechtThe Netherlands
  68. 68.CaltechPasadenaUSA
  69. 69.University of AmsterdamAmsterdamThe Netherlands
  70. 70.Tsukuba UniversityIbarakiJapan

Personalised recommendations