Advertisement

Experimental Astronomy

, Volume 30, Issue 1, pp 39–58 | Cite as

Apodized Lyot coronagraph for SPHERE/VLT

I. Detailed numerical study
  • Marcel Carbillet
  • Philippe Bendjoya
  • Lyu Abe
  • Géraldine Guerri
  • Anthony Boccaletti
  • Jean-Baptiste Daban
  • Kjetil Dohlen
  • André Ferrari
  • Sylvie Robbe-Dubois
  • Richard Douet
  • Farrokh Vakili
Original Article

Abstract

SPHERE (which stands for Spectro-Polarimetric High-contrast Exoplanet REsearch) is a second-generation Very Large Telescope (VLT) instrument dedicated to high-contrast direct imaging of exoplanets which first-light is scheduled for 2011. Within this complex instrument one of the central components is the apodized Lyot coronagraph (ALC). The present paper reports on the most interesting aspects and results of the whole numerical study made during the design of the ALC for SPHERE/VLT. The method followed for this study is purely numerical, but with an end-to-end approach which is largely fed by a number of instrumental feedbacks. The results obtained and presented in this paper firstly permit to finalize the optical design before laboratory performance testing of the ALC being built for SPHERE/VLT (see paper II “Laboratory tests and performances”), but will also hopefully help conceiving future other instruments alike, for example within the very promising extremely large telescope perspective.

Keywords

Stellar coronagraphy Apodized Lyot coronagraph SPHERE Numerical simulations 

Notes

Acknowledgements

The authors wish to thank A. Domiciano de Souza for a pertinent remark. Thanks are also due to Th. Fusco for providing the code permitting to simulate the XAO system SAXO, and to an anonymous referee for his comments that permitted to clarify some important points of the paper. G. Guerri is grateful to the CNRS (Centre National de la Recherche Scientifique, France), the Région Provence Alpes Côte d’Azur (France), and Sud-Est Optique de Précision (France) for having supported her PhD thesis. SPHERE is an instrument designed and built by a consortium consisting of LAOG (Laboratoire d’Astrophysique de Grenoble, France), MPIA (Max-Planck-Institute für Astronomie, Heidelberg, Germany), LAM (Laboratoire d’Astrophysique de Marseille, France), LESIA (Laboratoire d’Études Spatiales et d’Instrumentation en Astrophysique, Meudon, France), Laboratoire H. Fizeau (Nice, France), INAF–OAPD (Istituto Nazionale di AstroFisica–Osservatorio Astrofisico di Padova, Italy), Observatoire de Genève (Switzerland), ETH (Eidgenössische Technische Hochschule, Zürich, Switzerland), NOVA (Nederlandse Onderzoekschool voor de Astronomie, Leiden, The Netherlands), ONERA (Office National d’Études et de Recherches Aérospatiales, Châtillon, France), and ASTRON (Dwingeloo, The Netherlands), in collaboration with ESO (European Southern Observatory, Garching-bei-München, Germany).

References

  1. 1.
    Mayor, M., Queloz, D.: A Jupiter-mass companion to a solar-type star. Nature 378, 355 (1995)CrossRefADSGoogle Scholar
  2. 2.
    Beuzit, J.-L., Feldt, M., Dohlen, K., et al.: SPHERE: a planet finder instrument for the VLT. The Messenger 125, 29 (2006)ADSGoogle Scholar
  3. 3.
    Rouan, D., Riaud, P., Boccaletti, A., et al.: The four-quadrant phase-mask coronagraph. I. Principle. PASP 112, 1479 (2000)CrossRefADSGoogle Scholar
  4. 4.
    Aime, C., Soummer, R., Ferrari, A.: Total coronagraphic extinction of rectangular apertures using linear prolate apodization. A&A 389, 334 (2002)CrossRefADSGoogle Scholar
  5. 5.
    Guerri, G., Daban, J.-B., Robbe-Dubois, S., et al.: Apodized Lyot coronagraph for SPHERE/VLT: II. Laboratory tests and performances. Exp. Astron. (2011, accepted)Google Scholar
  6. 6.
    Lyot, B.: La couronne solaire étudiée en dehors des éclipses. C. R. Acad. Sci. Paris 4860, 171 (1930)Google Scholar
  7. 7.
    Lyot, B.: The study of the solar corona and prominences without eclipses. MNRAS 4860, 171 (1939)Google Scholar
  8. 8.
    Soummer, R., Aime, C., Falloon, P.: Stellar coronagraphy with prolate apodized circular apertures. A&A 397, 1161 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Aime, C., Soummer, R.: Introduction to stellar coronagraphy with entrance pupil apodization. In: Aime, C., Soummer, R. (eds.) Astronomy with High Contrast Imaging: From Planetary Systems to Active Galactic Nuclei. EAS Pub. Series 8, 79 (2002)Google Scholar
  10. 10.
    Abe, L.: Numerical simulations in coronagraphy. Part I. In: Aime, C., Soummer, R. (eds.) Astronomy with High Contrast Imaging II: Instrumentation for Coronagraphy and Nulling Interferometry. EAS Pub. Series 12, 157 (2004)Google Scholar
  11. 11.
    Boccaletti, A.: Numerical simulations in coronagraphy. Part II. In: Aime, C., Soummer, R. (eds.) Astronomy with High Contrast Imaging II: Instrumentation for Coronagraphy and Nulling Interferometry. EAS Pub. Series 12, 165 (2004)Google Scholar
  12. 12.
    Ferrari, A., Soummer, R., Aime, C.: An introduction to stellar coronagraphy. C. R. Phys. 8(3–4), 277 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Martinez, P., Boccaletti, A., Kasper, M., et al.: Optimization of apodized pupil Lyot coronagraph for ELTs. A&A 474(2), 671 (2007)CrossRefADSGoogle Scholar
  14. 14.
    Soummer, R., Pueyo, L., Sivaramakrishnan, A., Vanderbei, R.J.: Fast computation of Lyotstyle coronagraph propagation. Opt. Express 15(24), 15935 (2007)CrossRefADSGoogle Scholar
  15. 15.
    Guyon, O., Roddier, F.: Direct exoplanet imaging possibilities of the nulling stellar coronagraph. In: Léna, P.J., Quirrenbach, A. (eds.) Interferometry in Optical Astronomy. SPIE Proc. 4006, 377 (2000)Google Scholar
  16. 16.
    Soummer, R., Aime, C., Falloon, P.: Prolate apodized coronagraphy: numerical simulations for circular apertures. In: Aime, C., Soummer, R. (eds.) Astronomy with High Contrast Imaging: From Planetary Systems to Active Galactic Nuclei. EAS Pub. Series 8, 93 (2003)Google Scholar
  17. 17.
    Soummer, R.: Apodized pupil Lyot coronagraphs for arbitrary telescope apertures. ApJ 618, L161 (2005)CrossRefADSGoogle Scholar
  18. 18.
    Carbillet, M., Vérinaud, C., Guarracino, M., et al.: CAOS - a numerical simulation tool for astronomical adaptive optics (and beyond). In: Bonaccini, D., Ellerbroek, B., Ragazzoni, R. (eds.) Adaptive Optics Systems, SPIE Proc. 5490(2), 550 (2004)Google Scholar
  19. 19.
    Petit, C., Fusco, Th., Charton, J., et al.: The SPHERE XAO system: design and performance. In: Hubin, N., Max, C.E., Wizinowich, P.L. (eds.) Advancements in Adaptive Optics. SPIE Proc. 7015, 70151D (2008)Google Scholar
  20. 20.
    Dohlen, K., Langlois, M., Saisse, M., et al.: The infra-red dual imaging and spectrograph for SPHERE: design and performance. In: McLean, I.S., Casali, M.M. (eds.) Ground-based and Airborne Instrumentation. SPIE Proc. 7014, 70143L (2008)Google Scholar
  21. 21.
    Claudi, R., Turatto, M., Gratton, R., et al.: SPHERE IFS: the spectro differential imager of the VLT for exoplanets search. In: McLean, I.S., Casali, M.M. (eds.) Ground-based and Airborne Instrumentation. SPIE Proc. 7014, 70143E (2008)Google Scholar
  22. 22.
    Thalmann, Ch., Schmid, H.M., Boccaletti, A., et al.: SPHERE ZIMPOL: overview and performance simulation. In: McLean, I.S., Casali, M.M. (eds.) Ground-based and Airborne Instrumentation. SPIE Proc. 7014, 70143F (2008)Google Scholar
  23. 23.
    Carbillet, M., Boccaletti, A., Thalmann, Ch., et al.: The software package SPHERE: a CAOS-based numerical tool for end-to-end simulations of SPHERE/VLT. In: Hubin, N., Max, C.E., Wizinowich, P.L. (eds.) Advancements in Adaptive Optics. SPIE Proc. 7015, 70156Z (2008)Google Scholar
  24. 24.
    Boccaletti, A., Carbillet, M., Fusco, Th., et al.: End to end simulation of AO-assisted coronagraphic differential imaging: estimation of performance for SPHERE. In: Hubin, N., Max, C.E., Wizinowich, P.L. (eds.) Advancements in Adaptive Optics. SPIE Proc. 7015, 70156E (2008)Google Scholar
  25. 25.
    Guerri, G., Robbe-Dubois, S., Daban, J.-B., et al.: Apodized Lyot coronagraph for VLT-SPHERE: laboratory tests and performances of a first prototype in the visible. In: McLean, I.S., Casali, M.M. (eds.) Ground-based and Airborne Instrumentation II. SPIE Proc. 7014, 70143J (2008)Google Scholar
  26. 26.
    Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, 499 (1979)Google Scholar
  27. 27.
    Goodell, W.V., Coulter, J.K., Johnson, P.B.: Optical constants of Inconel alloy films. J. Opt. Soc. Am. 63, 85 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Marcel Carbillet
    • 1
  • Philippe Bendjoya
    • 1
  • Lyu Abe
    • 1
  • Géraldine Guerri
    • 1
  • Anthony Boccaletti
    • 2
  • Jean-Baptiste Daban
    • 1
  • Kjetil Dohlen
    • 3
  • André Ferrari
    • 1
  • Sylvie Robbe-Dubois
    • 1
  • Richard Douet
    • 1
  • Farrokh Vakili
    • 1
  1. 1.UMR 6525 H. FizeauUniversité de Nice Sophia Antipolis/CNRS/Observatoire de la Côte d’AzurNiceFrance
  2. 2.UMR 8109 LESIAObservatoire de Meudon/CNRSMeudonFrance
  3. 3.UMR 6110 LAMObservatoire Astrophysique de Marseille-Provence, Université de Provence/CNRSMarseilleFrance

Personalised recommendations