Experimental Astronomy

, Volume 29, Issue 3, pp 207–225 | Cite as

Characterization of the atmosphere above a site for millimeter wave astronomy

  • Francesco Tony Nasir
  • Franco Buffa
  • Gian Luigi Deiana
Original Article


The Sardinia Radio Telescope (SRT) is a challeging scientific project managed by the National Institute for Astrophysics (INAF), it is being developed at 30 km North of the city of Cagliari, Italy. The goal of the SRT project is to build a general purpose, fully steerable, 64 m diameter radio telescope, capable of operating with high efficiency in the centimeter and millimeter frequency range (0.3–100 GHz). In portions of this frequency range, especially towards the high end, astronomical observations can be heavily deteriorated by non-optimal atmospheric conditions, especially by water vapor content. The water molecule permanent electric dipole in fact, leads to pressure broadened rotational transitions around the 22.23 GHz spectral line. Furthermore, water vapor’s continuum absorption and emission may influence higher frequency observations too. To a lower degree, cloud liquid black body radiation can also affect centimeter and millimeter observations. In addition to this, inhomogeneities in water vapor distributions can cause signal phase errors which introduce a great amount of uncertainty to VLBI mode observations. The Astronomical Observatory of Cagliari (OA-CA) has obtained historical timeseries of radiosonde profiles conducted at the airport of Cagliari. Through the radiosonde measurements and an appropriate radiative transfer model, we have performed a statistical analysis of the SRT site’s atmosphere which accounts for atmospheric opacity at different frequencies, integrated water vapor (IWV), integrated liquid water (ILW) and cloud cover distributions during the year. This will help to investigate in which period of the year astronomical observations at different frequencies should be performed preferably. The results show that, at the SRT site, K-band astronomical observations are possible all year round, the median opacity at 22.23 GHz is 0.10 Np in the winter (Dec-Jan-Feb) and 0.16 Np in the summer (Jun-Jul-Aug). Integrated water vapor during winter months ranges, on average, between 7 and 15 mm. Cloud cover is usually not present for more than 36% of the time during the year. The atmospheric opacity study indicates that observations at higher frequencies (50–100 GHz) may be performed usefully: the median opacity at 100 GHz is usually below or equal to 0.2 Np in the period that ranges from January to April.


Opacity Integrated water vapor Integrated liquid water Radiative transfer model Radiosondes Radiotelescope 



The authors are grateful to Dr. Andrea Tarchi, to Dr. Alessandro Orfei and to Dr. Alessandro Delitala for their useful suggestions. We are also thankful to Dr. Mauro Sorgente for his contributions to the data processing of the GPS receiver.


  1. 1.
    Bevis, M., Businger, S., Chiswell, S., Herring, T., Anthes, R., Richard, A., Rocken, C., Ware, R.H.: GPS meteorology: mapping zenith wet delays onto precipitable water. J. Appl. Meteorol. 33, 379 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    Buehler, S.A., Eriksson, P., Kuhn, T., Von Eneln, A., Verdes, C.: ARTS, the atmospheric radiative transfer simultor. J. Quant. Spectrosc. Radiat. Transfer 91(1), 65 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    Bustos, R., Delgado, G., Nyman, L., Radford, S.: 52 years of climatology data for the Chajnantor area. ALMA Memo, 333 (2000)Google Scholar
  4. 4.
    Cimini, D., Westwater, E.R., Gasiewski, A.J., Klein, M., Leuski, V.Y., Liljegren, J.C.: Ground-based millimeter and submillimeter-wave observations of low vapor and liquid water contents. IEEE Trans. Geosci. Remote Sens. 45(7), 2169 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Cimini, D., Nasir, F., Westwater, E.R., Paine, V.H., Turner, D.D., Mlawer, E.J., Exner, M.L., Cadeddu, M.P.: Comparison of ground-based millimeter-wave observations and simulations in the artic winter. IEEE Trans. Geosci. Remote Sens. 47(9), 3098 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Mattioli, V., Basili, S., Bonafoni, P., Ciotti, Westwater, E.R.: Analysis and improvements of cloud models for propagation studies. Radio Sci. 44 RS2005, 13 (2009)Google Scholar
  7. 7.
    Memmo, A., Fionda, E., Paolucci, T., Cimini, D., Ferretti, R., Bonafoni, S., Ciotti, P.: Comparison of MM5 integrated water vapor with miceowave radiometer, GPS, and radiosonde measurements. IEEE TGRS 43(5), 1050 (2005)ADSGoogle Scholar
  8. 8.
    Mendes, V.B., Prates, D., Santos, L., Langley, R.B.: An evaluation of models for the determination of mean weighed temperature of the atmosphere. In: Proc. of the 2000 National Technical Meeting, vol. 443. Institute of Navigation, USA (2000)Google Scholar
  9. 9.
    Orfei, A.: Indagine Sui Siti di Medicina e Noto per un Loro Utilizzo Nella Banda 90 GHz (3 mm). IRA Internal Report, IRA 393/06 (2006)Google Scholar
  10. 10.
    Orfei, A.: Performance Estimation at 90 GHz (3.3 mm) of the Medicina and Noto Sites. IRA Internal Report, IRA 418/08 (2008)Google Scholar
  11. 11.
    Parameswaran, K., Kristina, B.V.: Altitude profile of tropospheric water vapor at low altitude. J. Appl. Meteorol. 29, 665 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    Petty, G.W.: A First Course in Atmospheric Radiation, 2nd edn, pp. 269. Sundog Publishing, Printed in the United States of America (2006)Google Scholar
  13. 13.
    Pulvirenti, L., Pierdicca, N., Marzano, F.S.: Simulating brightness temperatures in cloudy conditions over the Mediterranean Sea. In: Proc. of URSI GA 2005. New Delhi (2005)Google Scholar
  14. 14.
    Hansler, M.: Statistical summary of the tropospheric seeing at Effelsberg and development of a tropospheric seeing generator for the SKA simulator. Max-Plank-Institute fur radioastronomie, Internal report (2006). Available at Last visited 28 September 2010
  15. 15.
    Holton, J.R.: An Introduction to Dynamic Meteorology, 4th edn, pp. 300. Elsevier Academic Press, Printed in the United States of America (2005)Google Scholar
  16. 16.
    Janssen, M.A.: Atmospheric Remote Sensing by Microwave Radiometry, pp. 180. Wiley series in remote sensing, Printed in United States of America (1992)Google Scholar
  17. 17.
    Rodgers, C.D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, pp. 14. World Scientific Publishing Company, London (2000)zbMATHCrossRefGoogle Scholar
  18. 18.
    Sandri, M., Ambrosini, R.: Probabilit Cumulative e Serie Temporali di Opacit con Radiometro WVR da Cagliari per L’Anno 1999. IRA Internal Report, IRA 296/00 (1999)Google Scholar
  19. 19.
    Setti, G.: Synthetic history of the SRT project. Mem. Soc. Astron. Ital. 10, 16 (2006)Google Scholar
  20. 20.
    Tarchi, A., Castangia, P., Henkel., C., Menten, K.M.: Hunting for H2 megamasers with the SRT. Mem. Soc. Astron. Ital. 10, 120 (2006)Google Scholar
  21. 21.
    Turner, D.D., Clough, A.S., Liljegren, J.C., Clothiaux, E.E., Cady-Pereira, K.E., Gaustad, K.L.: Retriving liquid water path and precipitable water vapor from the atmopsheric radiation measurements (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens. 45(11), 3680 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    Turner, D.D., Vogelmann, A.M., Austin, R.T., Barnard, J.C., Cady-Pereira, K.E., Chiu, J.C., Clough, S.A., Flynn, C., Kahiyer, M.M., Liljegren, J., Johnson, K., Lin B., Long, B., Marshak A., Matrosov, S.Y., McFarlane, S.A. Miller, M., Min Q., Minnis, P., O’Hirok, W., Wang, Z., Wiscombe, W.: Thin liquid water clouds, their importance and our challange. Bull. Am. Meteorol. Soc. 88(2), 177 (2007)Google Scholar
  23. 23.
    Whiteman, D.N., Melfi, F.A.: Cloud liquid water, mean droplet radius, and number density measurements using a Raman lidar. J. Geophys. Res. 104(D24), 31 (1999)CrossRefGoogle Scholar
  24. 24.
    Wu, S.: Optimum frequencies of a passive microwave radiometer for tropospheric path-length correction. IEEE Trans. Geosci. Remote Sens. 27(2), 233 (1979)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Francesco Tony Nasir
    • 1
  • Franco Buffa
    • 1
  • Gian Luigi Deiana
    • 1
  1. 1.Osservatorio Astronomico di CagliariCapoterra (CA)Italy

Personalised recommendations