Advertisement

Experimental Astronomy

, Volume 24, Issue 1–3, pp 9–46 | Cite as

Interstellar heliospheric probe/heliospheric boundary explorer mission—a mission to the outermost boundaries of the solar system

  • Robert F. Wimmer-Schweingruber
  • Ralph McNutt
  • Nathan A. Schwadron
  • Priscilla C. Frisch
  • Mike Gruntman
  • Peter Wurz
  • Eino Valtonen
  • The IHP/HEX Team
Original Article

Abstract

The Sun, driving a supersonic solar wind, cuts out of the local interstellar medium a giant plasma bubble, the heliosphere. ESA, jointly with NASA, has had an important role in the development of our current understanding of the Suns immediate neighborhood. Ulysses is the only spacecraft exploring the third, out-of-ecliptic dimension, while SOHO has allowed us to better understand the influence of the Sun and to image the glow of interstellar matter in the heliosphere. Voyager 1 has recently encountered the innermost boundary of this plasma bubble, the termination shock, and is returning exciting yet puzzling data of this remote region. The next logical step is to leave the heliosphere and to thereby map out in unprecedented detail the structure of the outer heliosphere and its boundaries, the termination shock, the heliosheath, the heliopause, and, after leaving the heliosphere, to discover the true nature of the hydrogen wall, the bow shock, and the local interstellar medium beyond. This will greatly advance our understanding of the heliosphere that is the best-known example for astrospheres as found around other stars. Thus, IHP/HEX will allow us to discover, explore, and understand fundamental astrophysical processes in the largest accessible plasma laboratory, the heliosphere.

Keywords

ISM: general Solar system: general Interplanetary medium Space vehicles: instruments Cosmic rays 

References

  1. 1.
    Anderson, J.D., Laing, P.A., Lau, E.L., Liu, A.S., Nieto, M.M., Turyshev, S. G.: Indication, from Pioneer 10/11, Galileo, and Ulysses Data, of an apparent anomalous, weak, long-range acceleration. Phys. Rev. Lett. 81, 2858–2861 (1998)CrossRefADSGoogle Scholar
  2. 2.
    Beer, J., Blinov, A., Bonani, G., Finkel, R.C., Hofmann, H.J., Lehmann, B., Oeschger, H., Sigg, A., Schwander, J., Staffelbach, T., et al.: Use of 10Be in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164–166 (1990)CrossRefADSGoogle Scholar
  3. 3.
    Breitschwerdt, D., de Avillez, M.A.: The history and future of the Local and Loop I bubbles. Astron. Astrophys. 452, L1–L5 (2006). doi: 10.1051/0004-6361:20064989 CrossRefADSGoogle Scholar
  4. 4.
    Brown, D., Bomans, D.J.: To see or not to see a bow shock. Identifying bow shocks with Hα allsky surveys. Astron. Astrophys. 439, 183–194 (2005)CrossRefADSGoogle Scholar
  5. 5.
    Burlaga, L.F., Ness, N.F., Acuña, M.H., Lepping, R.P., Connerney, J.E.P., Stone, E.C., McDonald, F.B.: Crossing the termination shock into the heliosheath: magnetic fields. Science 309, 2027–2029 (2005)CrossRefADSGoogle Scholar
  6. 6.
    Burlaga, L.F., Ness, N.F., Belcher, J.W., Szabo, A., Isenberg, P.A., Lee, M.A.: Pickup protons and pressure-balanced structures: Voyager 2 observations in merged interaction regions near 35 AU. J. Geophys. Res. 99, 21511–21524 (1994)CrossRefADSGoogle Scholar
  7. 7.
    Burns, J.A., Lamy, P.H., Soter, S.: Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979)CrossRefADSGoogle Scholar
  8. 8.
    Cummings, A.C., Stone, E.C., Steenberg, C.D.: Composition of anomalous cosmic rays and other heliospheric ions. Astrophys. J. 578, 194–210 (2002)CrossRefADSGoogle Scholar
  9. 9.
    Czechowski, A., Mann, I.: Penetration of interstellar dust grains into the heliosphere. J. Geophys. Res. (Space Physics) 108, LIS13.1–LIS13.9 (2003)CrossRefGoogle Scholar
  10. 10.
    Dwyer, J.R., Mason, G.M., Mazur, J.E., Jokipii, J.R., von Rosenvinge, T.T., Lepping, R.P.: Perpendicular transport of low-energy corotating interaction region-associated nuclei. Astrophys. J. 490, L115–L118 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Ferreira, S.E.S., Potgieter, M.S., Scherer, K.: Transport and acceleration of anomalous cosmic rays in the inner heliosheath. J. Geophys. Res. (Space Physics). 112(A11), 11101 (2007). doi: 10.1029/2007JA012477 CrossRefADSGoogle Scholar
  12. 12.
    Filbert, P.C., Kellogg, P.J.: Electrostatic noise at the plasma frequency beyond the earth’s bow shock. J. Geophys. Res. 84, 1369–1381 (1979). doi: 10.1029/JA084iA04p01369 CrossRefADSGoogle Scholar
  13. 13.
    Fisk, L.A., Jokipii, J.R.: Mechanisms for latitudinal transport of energetic particles in the Heliosphere. Space Sci. Rev. 89, 115–124 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Fisk, L.A., Kozlovsky, B., Ramaty, R.: An interpretation of the observed oxygen and nitrogen enhancements in low-energy cosmic rays. Astrophys. J. 190, L35–L37 (1974)CrossRefADSGoogle Scholar
  15. 15.
    Florinski, V., Zank, G.P.: Particle acceleration at a dynamic termination shock. Geophys. Res. Lett. 33, L15110.1–L15110.5 (2006)CrossRefGoogle Scholar
  16. 16.
    Florinski, V., Zank, G.P., Pogorelov, N.V.: Galactic cosmic ray transport in the global heliosphere. J. Geophys. Res. 108, 1228 (2003)CrossRefGoogle Scholar
  17. 17.
    Frisch, P.C., Dorschner, J.M., Geiss, J., Greenberg, J.M., Grün, E., Landgraf, M., Hoppe, P., Jones, A.P., Krätschmer, W., Linde, T. J., et al.: Dust in the local interstellar wind. Astrophys. J. 525, 492–516 (1999)CrossRefADSGoogle Scholar
  18. 18.
    Frisch, P.C., Slavin, J.D.: Short-term variations in the galactic environment of the sun. ArXiv Astrophysics e-printsGoogle Scholar
  19. 19.
    Galli, A., Wurz, P., Barabash, S., Grigoriev, A., Lundin, R., Futaana, Y., Gunell, H., Holmström, M., Roelof, E.C., Curtis, C.C., et al.: Direct measurements of energetic neutral hydrogen in the interplanetary medium. Astrophys. J. 644, 1317–1325 (2006)CrossRefADSGoogle Scholar
  20. 20.
    Gayley, K.G., Zank, G.P., Pauls, H.L., Frisch, P.C., Welty, D.E.: One- versus two-shock heliosphere: constraining models with Goddard high resolution spectrograph ly alpha spectra toward alpha centauri. Astrophys. J. 487, 259 (1997)CrossRefADSGoogle Scholar
  21. 21.
    Gurnett, D.A., Allendorf, S.C., Kurth, W.S.: Direction-finding measurements of heliospheric 2–3kHz radio emissions. Geophys. Res. Lett. 25, 4433 (1998). doi: 10.1029/1998GL900201 CrossRefADSGoogle Scholar
  22. 22.
    Grün, E., Srama, R., Krüger, H., Kempf, S., Dikarev, V., Helfert, S., Moragas-Klostermeyer, G.: 2002 Kuiper prize lecture: dust astronomy. Icarus 174, 1–14 (2005)ADSGoogle Scholar
  23. 23.
    Heber, B., Ferrando, P., Paizis, C., Müller-Mellin, R., Kunow, H., Potgieter, M.S., Ferreira, S.E.S., Burger, R.A.: Latitudinal gradients and charge sign dependent modulation of galactic cosmic rays. In: Scherer, K., Fichtner, H., Fahr, H.J., Marsch, E. (eds.) The Outer Heliosphere: The Next Frontiers, p 191 (2001)Google Scholar
  24. 24.
    Ip, W.-H. and Axford, W.I.: Estimates of galactic cosmic ray spectra at low energies. Astron. Astrophys. 149, 7–10 (1985)ADSGoogle Scholar
  25. 25.
    Izmodenov, V.V., Geiss, J., Lallement, R., Gloeckler, G., Baranov, V.B., Malama, Y.G.: Filtration of interstellar hydrogen in the two-shock heliospheric interface: inferences on the local interstellar cloud electron density. J. Geophys. Res. 104, 4731–4742 (1999)CrossRefADSGoogle Scholar
  26. 26.
    Jokipii, J.R.: The magnetic field structure in the heliosheath. Astrophys. J. 631, L163–L165 (2005)CrossRefADSGoogle Scholar
  27. 27.
    Kayser-Threde: Preliminary resource allocation & propulsion trades. Technical Report IHP-TN-KTH-0001, Kayser-Threde (2004a)Google Scholar
  28. 28.
    Kayser-Threde: Spacecraft design and budgets. Technical Report IHP-TN-KTH-0001, Kayser-Threde (2004b)Google Scholar
  29. 29.
    Kayser-Threde: Interstellar heliopause probe summary report. Technical Report IHP-TN-KTH-0011, Kayser-Threde (2004)Google Scholar
  30. 30.
    Kayser-Threde: Interstellar heliopause probe summary report. Technical Report IHP-TN-KTH-0011, Kayser-Threde (2005)Google Scholar
  31. 31.
    Kurth, W.S., Gurnett, D.A.: Plasma waves as indicators of the termination shock. J. Geophys. Res. 98, 15129 (1993). doi: 10.1029/93JA01176 CrossRefADSGoogle Scholar
  32. 32.
    Lallement, R., Quémerais, E., Bertaux, J.L., Ferron, S., Koutroumpa, D., Pellinen, R.: Deflection of the interstellar neutral hydrogen flow across the heliospheric interface. Science 307, 1447–1449 (2005)CrossRefADSGoogle Scholar
  33. 33.
    Linsky, J.L., Wood, B.E.: The alpha Centauri line of sight: D/H ratio, physical properties of local interstellar gas, and measurement of heated hydrogen (The ‘Hydrogen Wall’) near the heliopause. Astrophys. J. 463, 254 (1996)CrossRefADSGoogle Scholar
  34. 34.
    Mann, I., Czechowski, A., Grzedzielski, S.: Dust measurements at the edge of the solar system. Adv. Space Res. 34, 179–183 (2004)CrossRefADSGoogle Scholar
  35. 35.
    Mazur, J.E., Mason, G.M., Blake, J.B., Klecker, B., Leske, R.A., Looper, M.D., Mewaldt, R. A.: Anomalous cosmic ray argon and other rare elements at 1 − 4 MeV/nucleon trapped in the Earth’s magnetosphere. J. Geophys. Res. 105, 21015–21023 (2000)CrossRefADSGoogle Scholar
  36. 36.
    McComas, D.J., Allegrini, F., Bartolone, L., Bochsler, P., Bzowski, M., Collier, M., Fahr, H., Fichtner, H., Frisch, P., Funsten, H., et al.: The interstellar boundary explorer (IBEX): update at the end of phase B. In: Heerikhuisen, J., Florinski, V., Zank, G.P., Pogorelov, N.V. (eds.) Physics of the Inner heliosheath, vol. 858 of American Institute of Physics Conference Series, pp. 241–250 (2006)Google Scholar
  37. 37.
    McComas, D.J., Schwadron, N.A.: An explanation of the Voyager paradox: particle acceleration at a blunt termination shock. Geophys. Res. Lett. 33, 4102 (2006)CrossRefGoogle Scholar
  38. 38.
    McDonald, F.B.: Cosmic-ray modulation in the heliosphere a phenomenological study. Space Sci. Rev. 83, 33–50 (1998). adsabs.harvard.edu/abs/1998SSRv...83...33M. Provided by the SAO/NASA Astrophysics Data SystemCrossRefADSGoogle Scholar
  39. 39.
    McDonald, F.B., Webber, W.R., Stone, E.C., Cummings, A.C., Heikkila, B.C., Lal, N.: Voyager observations of galactic and anomalous cosmic rays in the helioshealth. In: Heerikhuisen, J., Florinski, V., Zank, G.P., Pogorelov, N.V. (eds.) Physics of the Inner Heliosheath, vol. 858 of American Institute of Physics Conference Series, pp. 79–85 (2006)Google Scholar
  40. 40.
    Mewaldt, R.A., Cummings, A.C., Stone, E.C.: Anomalous cosmic rays: Interstellar interlopers in the heliosphere and magnetosphere. EOS Transactions 75, 185 (1994). doi: 10.1029/94EO00864 CrossRefADSGoogle Scholar
  41. 41.
    Möbius, E., Bzwoski, M., Müller, H.-R., Wurz, P.: Effects in the inner heliosphere caused by changing conditions in the galactic environment. In: Frisch, P.C. (ed.) Solar Journey: the Significance of our Galactic Environment for the Heliosphere and Earth. University of Chicago, IL, USA. Astrophysics and Space Science Library, vol. 338. Springer Dordrecht (2006)Google Scholar
  42. 42.
    Opher, M., Stone, E.C., Gombosi, T.I.: The orientation of the local interstellar magnetic field. Science 316, 875–878 (2007)CrossRefADSGoogle Scholar
  43. 43.
    Pesses, M.E., Eichler, D., Jokippi, J.R.: Cosmic ray drift, shock wave acceleration, and the anomalous component of cosmic rays. Astrophys. J. 246, L85–L88 (1981)CrossRefADSGoogle Scholar
  44. 44.
    Postberg, F., Kempf, S., Srama, R., Green, S.F., Hillier, J.K., McBride, N., Grün, E.: Composition of jovian dust stream particles. Icarus 183, 122–134 (2006). doi: 10.1016/j.icarus.2006.02.001 CrossRefADSGoogle Scholar
  45. 45.
    Raisbeck, G.M., Yiou, F., Bourles, D., Lorius, C., Jouzel, J., Barkov, N.I.: Evidence for two intervals of enhanced 10Be deposition in Antarctic ice during the last glacial period. Nature 326, 273–277 (1987)CrossRefADSGoogle Scholar
  46. 46.
    Reames, D.V.: Quiet-time spectra and abundances of energetic particles during the 1996 solar minimum. Astrophys. J. 518, 473–479 (1999)CrossRefADSGoogle Scholar
  47. 47.
    Scherer, K., Fichtner, H., Borrmann, T., Beer, J., Desorgher, L., Flükiger, E., Fahr, H.-J., Ferreira, S.E.S., Langner, U. W., Potgieter, M.S., et al.: Interstellar–terrestrial relations: variable cosmic environments, the dynamic heliosphere, and their imprints on terrestrial archives and climate. Space Sci. Rev. 127, 327–465 (2006)CrossRefADSGoogle Scholar
  48. 48.
    Scherer, K., Fichtner, H., Stawicki, O.: Shielded by the wind: the influence of the interstellar medium on the environment of the earth. J. Atmos. Sol. Ter. Phys. 64, 795–804 (2002)CrossRefADSGoogle Scholar
  49. 49.
    Schwadron, N.A., Combi, M., Huebner, W., McComas, D.J.: The outer source of pickup ions and anomalous cosmic rays. Geophys. Res. Lett. 29, 54.1–54.4 (2002)Google Scholar
  50. 50.
    Schwadron, N.A., Fisk, L.A., Gloeckler, G.: Statistical acceleration of interstellar pick-up ions in co-rotating interaction regions. Geophys. Res. Lett. 23, 2871–2874 (1996)CrossRefADSGoogle Scholar
  51. 51.
    Slavin, J.D., Frisch, P.C.: Evidence of a high carbon abundance in the local interstellar cloud. Astrophys. J. 651, L37–L40 (2006)CrossRefADSGoogle Scholar
  52. 52.
    Slavin, J.D., Frisch, P.C.: The chemical composition of interstellar matter at the solar location. Space Sci. Rev. 130, 409–414 (2007)CrossRefADSGoogle Scholar
  53. 53.
    Stone, E.C., Cummings, A.C., McDonald, F.B., Heikkila, B.C., Lal, N., Webber, W.R.: Voyager 1 explores the termination shock region and the heliosheath beyond. Science 309, 2017–2020 (2005)CrossRefADSGoogle Scholar
  54. 54.
    Srama, R., Ahrens, T.J., Altobelli, N., Auer, S., Bradley, J.G., Burton, M., Dikarev, V.V., Economou, T., Fechtig, H., Görlich, M., et al.: The cassini cosmic dust analyzer. Space Sci. Rev. 114, 465–518 (2004). doi: 10.1007/s11214-004-1435-z CrossRefADSGoogle Scholar
  55. 55.
    UNSCEAR: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 1993 Report to the General Assembly, with Scientific Annexes. United Nations, New York (1993)Google Scholar
  56. 56.
    Witte, M.: Kinetic parameters of interstellar neutral helium. Review of results obtained during one solar cycle with the Ulysses/GAS-instrument. Astron. Astrophys. 426, 835–844 (2004)CrossRefADSGoogle Scholar
  57. 57.
    Wood, B.E., Redfield, S., Linsky, J.L., Müller, H.-R., Zank, G.P.: Stellar Lyα emission lines in the hubble space telescope archive: intrinsic line fluxes and absorption from the heliosphere and astrospheres. Astrophys. J. Suppl. 159, 118–140 (2005)CrossRefADSGoogle Scholar
  58. 58.
    Wurz, P., Galli, A., Barabash, S., Grigoriev, A.: Energetic neutral atoms from the heliosheath. In: Heerikhuisen, J., Florinski, V., Zank, G.P., Pogorelov, N.V. (eds.) Physics of the inner heliosheath vol. 858 of American Institute of Physics Conference Series, pp. 269–275 (2006)Google Scholar
  59. 59.
    Yamamoto, S., Mukai, T.: Dust production by impacts of interstellar dust on Edgeworth-Kuiper Belt objects. Astron. Astrophys. 329, 785–791 (1998)ADSGoogle Scholar
  60. 60.
    Zank, G.P., Frisch, P.C.: Consequences of a change in the galactic environment of the sun. Astrophys. J. 518, 965–973 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Robert F. Wimmer-Schweingruber
    • 1
  • Ralph McNutt
    • 2
  • Nathan A. Schwadron
    • 3
  • Priscilla C. Frisch
    • 4
  • Mike Gruntman
    • 5
  • Peter Wurz
    • 6
  • Eino Valtonen
    • 7
  • The IHP/HEX Team
  1. 1.Institute for Experimental and Applied PhysicsChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Applied Physics LaboratoryJohn’s Hopkins UniversityLaurelUSA
  3. 3.Department of AstronomyBoston UniversityBostonUSA
  4. 4.University of ChicagoChicagoUSA
  5. 5.University of Southern CaliforniaLos AngelesUSA
  6. 6.Physikalisches InstitutUniversity of BernBernSwitzerland
  7. 7.University of TurkuTurkuFinland

Personalised recommendations