Experimental Astronomy

, Volume 21, Issue 2, pp 101–123 | Cite as

Large-scale diffractive X-ray telescopes

  • Christoph Braig
  • Peter Predehl
Original Article

Abstract

Capabilities of large-scale diffractive X-ray telescopes are discussed. Based on purely transmissive optics, an angular resolution of at least 10−3 arcsec will be achieved using detection techniques with spectral selectivities in the sub-eV range for short focal distances of few 102 km. We use stepped versions of Fresnel apertures made of plastic foils, divided into optically independent segments by two alternative schemes. It is shown that point source sensitivities near 103 cm2 keV require lens diameters up to 30 m. Like monochromatic objectives, properly shaped dual- or multiband telescopes may be tuned over several keV. Such configurations are made of partial Fresnel lenses with coinciding focal distances and similar spot sizes and compete well with single-band analogues.

Keywords

instrumentation: high angular resolution techniques: spectroscopic telescopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skinner, G.K.: Diffractive/refractive optics for high energy astronomy. Astron. Astrophys. 375, 691 (2001)CrossRefADSGoogle Scholar
  2. 2.
    Krizmanic, J. et al.: Formation flying for a Fresnel lens observatory mission. Exp. Astron. 20, 497 (2006)Google Scholar
  3. 3.
    Skinner, G.K. et al.: Fresnel lenses for X-ray and gamma-ray astronomy. Proc. SPIE 5168, 459 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Gorenstein, P.: Role of diffractive and refractive optics in X-ray astronomy. Proc. SPIE 5168, 411 (2004)CrossRefADSGoogle Scholar
  5. 5.
    Krizmanic, J. et al.: Development of Ground-testable Phase Fresnel lenses in Silicon (2006) (physics/0601012)Google Scholar
  6. 6.
    Di Fabrizio, E. et al.: High-efficiency multilevel zone plates for keV X-rays. Nature 401, 895 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Yang, B.X.: Fresnel and refractive lenses for X-rays. Nucl. Instr. Methods Phys. Res. A 328, 578 (1993)CrossRefADSGoogle Scholar
  8. 8.
    Kirz, J.: Phase zone plates for X-rays and the extreme UV. J. Opt. Soc. Am. 64(3), 301 (1974).ADSGoogle Scholar
  9. 9.
    Kipp, L. et al.: Sharper images by focusing soft X-rays with photon sieves. Nature 414, 184 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Storm, S.E. et al.: Giant Segmented Mirror Telescope: A point design based on science drivers. Proc. SPIE 4840, 116 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Young, M.: Zone plates and their aberrations. J. Opt. Soc. Am. 62(8), 972 (1972)ADSCrossRefGoogle Scholar
  12. 12.
    Born, M., Wolf, E.: Principles of Optics, 7th edition. Cambridge University Press, Cambridge (1999)Google Scholar
  13. 13.
    Vainshtein, L. et al.: Scattering of X-ray emission lines by atomic helium. Astron. Lett. 24, 271 (1998)ADSGoogle Scholar
  14. 14.
    Churazov, E. et al.: Compact and diffuse sources in the galactic center region (1999) (astro-ph/9901164)Google Scholar
  15. 15.
    Koyama, K. et al.: ASCA view of our galactic center: remains of past activities in X-rays? Publ. Astron. Soc. Japan 48, 249 (1996)ADSGoogle Scholar
  16. 16.
    del Rio, M.S., Dejus, R.J.: X-ray oriented programs (XOP), http://www.esrf.fr/computing/scientific/xop, ESRF, France (2002)
  17. 17.
    Shvyd'ko, Yu.V. et al.: X-ray interferometry with microelectronvolt resolution. Phys. Rev. Lett. 90, 013904-1 (2003)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Christoph Braig
    • 1
  • Peter Predehl
    • 1
  1. 1.Max-Planck-Institute für Extraterrestrische PhysikGarchingGermany

Personalised recommendations