Experimental Astronomy

, Volume 19, Issue 1–3, pp 111–134 | Cite as

CMOS Detector Technology

  • Alan Hoffman
  • Markus Loose
  • Vyshnavi Suntharalingam
Article

Abstract

An entry level overview of state-of-the-art CMOS detector technology is presented. Operating principles and system architecture are explained in comparison to the well-established CCD technology, followed by a discussion of important benefits of modern CMOS-based detector arrays. A number of unique CMOS features including different shutter modes and scanning concepts are described. In addition, sub-field stitching is presented as a technique for producing very large imagers. After a brief introduction to the concept of monolithic CMOS sensors, hybrid detectors technology is introduced. A comparison of noise reduction methods for CMOS hybrids is presented. The final sections review CMOS fabrication processes for monolithic and vertically integrated image sensors.

Keywords

APS active pixel sensor CCD CMOS focal plane array HgCdTe hybrid image sensor InSb three-dimensionally stacked circuits vertical integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aull, B. F., Loomis, A. H., Young, D. J., Stern, A., Felton, B. J., Daniels, P. J., Landers, D. J., Retherford, L., Rathman, D. D., Heinrichs, R. M., Marino, R. M., Fouche, D. G., Albota, M. A., Hatch, R. E., Rowe, G. S., Kocher, D. G., Mooney, J. G., O'Brien, M. E., Player, B. E., Willard, B. C., Liau, Z.-L. and Zayhowski, J. J.: 2004, Three-dimensional imaging with arrays of Geiger-mode avalanche photodiodes, Proc. SPIE, vol. 5353, pp. 105–116.ADSGoogle Scholar
  2. Bai, Y., Bernd, S. G., Hosack, J. R., Farris, M. C., Montroy, J. T. and Bajaj, J.: 2004, Hybrid CMOS focal plane array with extended UV and NIR response for space applications, Proc. SPIE, vol. 5167, pp 83–93.ADSGoogle Scholar
  3. Garnett, J. D. and Forrest, W. J.: 1993, Multiply sampled read limited and background limited noise performance, Proc. SPIE, vol. 1946, pp. 395–404.ADSGoogle Scholar
  4. Gregory, J. A., Burke, B. E., Cooper, M. J., Mountain, R. W. and Kosicki, B. B.: 1996, Fabrication of large-area CCD detectors on high-purity float zone silicon, Nucl. Instrum. Methods Phys. Res. A, vol. 377, pp. 325–333.CrossRefADSGoogle Scholar
  5. Joshi, A., Chiaverini, D., Jung, K., Douence, V., Wijeratne, G., Williams, G. M. and Loose, M.: 2005, Scalable architecture for high-resolution video-rate CMOS imaging system on chip, IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, pp. 181–184.Google Scholar
  6. Kozlowski, L., Rossi, G., Blanquart, L., Marchesini, R., Huang, Y., Chow, G. and Richardson, J.: 2005, A progressive 1920 × 1080 imaging system-on-chip for HDTV cameras, IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp. 358–359.Google Scholar
  7. Loose, M., Lewyn, L., Durmus, H., Garnett, J. D., Hall, D. N., Joshi, A. B., Kozlowski, L. J. and Ovsiannikov, I.: 2003, SIDECAR low-power control ASIC for focal plane arrays including A/D conversion and bias generation, Proc. SPIE, vol. 4841, pp. 782–794.ADSGoogle Scholar
  8. McMurtry, C. W.:University of Rochester, private communication. Data shown in Hoffman, A. et al., 2005, 1024 × 1024 Si:As IBC detector arrays for mid-infrared astronomy, SDW 2005 Proceedings, Springer, Netherlands.Google Scholar
  9. Suntharalingam, V., Berger, R., Burns, J. A., Chen, C. K., Keast, C. L., Knecht, J. M., Lambert, R. D., Newcomb, K. L., O'Mara, D. M., Rathman, D. D., Shaver, D. C., Soares, A. M., Stevenson, C. N., Tyrrell, B. M., Warner, K., Wheeler, B. D., Yost, D. R. W. and Young, D. J.: 2005, Megapixel CMOS image sensor fabricated in three-dimensional integrated circuit technology, IEEE International Solid-State Circuits Conference, Digest of Technical Papers, pp. 356–357.Google Scholar
  10. Suntharalingam, V., Burke, B., Cooper, M., Yost, D., Gouker, P., Anthony, M., Whittingham, H., Sage, J., Rabe, S., Chen, C., Knecht, J., Cann, S., Wyatt, P. and Keast, C.: 2000, Monolithic 3.3 V CCD/SOI-CMOS imager technology, International Electron Devices Meeting Technical Digest, pp. 697–700.Google Scholar
  11. Wuu, S. G., Yaung, D. N., Tseng, C. H., Chien, H. C., Wang, C. S., Fang, T. K., Wang, C. C., Sodini, C. G., Hsiao, Y. K., Chang, C. K. and Chang, B. J.: 2000, High performance 0.25-μm CMOS color imager technology with nonsilicide source/drain pixel, International Electron Devices Meeting Technical Digest, pp. 705–708.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Alan Hoffman
    • 1
  • Markus Loose
    • 2
  • Vyshnavi Suntharalingam
    • 3
  1. 1.Raytheon Vision SystemsGoletaUSA
  2. 2.Rockwell Scientific CompanyThousand OaksUSA
  3. 3.MIT Lincoln LaboratoryLexingtonUSA

Personalised recommendations