Evolutionary Ecology

, Volume 11, Issue 5, pp 519–529 | Cite as

Environment change, geographic migration and sickle cell anaemia

  • Boris A. Veytsman
Article

Summary

The classic model describing the interaction between sickle cell anaemia and malaria is one of the most notable achievements of population genetics. Nevertheless, only panmictic populations in steady environments have been studied theoretically to date. In this paper, environment change and geographic inhomogeneity are introduced. The rate of decrease of mutation after environment improvement is obtained. The kinetics of the spread of disease after the initial mutation, together with the genetic composition profile near the borders of malaria areas, are calculated. The results are compared with the empirical data on the mutation level in African and African-American populations. It is shown that the spread of disease and decrease in mutation are highly asymmetric: the mutation level increases exponentially and decreases much more slowly (as a power function). The mathematical and biological reasons for this behaviour are discussed.

Keywords

change human evolution malaria migration sickle cell anaemia steady state 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adekile, A.D., McKie, K.M. and Adeodu, O.O. (1993) Spleen in sickle cell anemia: Comparative studies of Nigerian and U.S. patients. Am. J. Hematol. 42, 316–321.PubMedCrossRefGoogle Scholar
  2. Bodmer, W.F. and Cavalli-Sforza, L.L. (1976) Genetics, Evolution and Man. W.H. Freeman, San Francisco, CA.Google Scholar
  3. Carlson, J., Nash, G.B., Gabutti, V., al-Yaman, F. and Wahlgren, M. (1994) Natural protection against severe Plasmodium falciparum malaria due to impaired rosette formation. Blood 84, 3909–3914.PubMedGoogle Scholar
  4. Cavalli-Sforza, L.L. and Bodmer, W.F. (1971) The Genetics of Human Populations. W.H. Freeman, San Francisco, CA.Google Scholar
  5. Cavalli-Sforza, L.L. and Feldman, M.W. (1981) Cultural Transmission and Evolution: A Quantitative Approach. Princeton University Press, Princeton, NJ.Google Scholar
  6. Edelstein, S.J. (1986) The Sickled Cell. Harvard University Press, Cambridge, MA.Google Scholar
  7. Fisher, R.A. (1937) The wave of advance of advantageous genes. Ann. Eugen. 7, 355–360.Google Scholar
  8. Frank-Kamenetskii, D.A. (1969) Diffusion and Heat Transfer in Chemical Kinetics. Plenum Press, New York.Google Scholar
  9. Gilmore, R. (1981) Catastrophe Theory for Scientists and Engineers. John Wiley, New York.Google Scholar
  10. Haldane, J.B.S. (1949) Disease and evolution. Ricerca Sci. 19 (suppl. 1), 3–10.Google Scholar
  11. Kolmogorov, A.N., Petrovskii, I.G. and Piskunov, N.S. (1937) Issledovanie uravneniya diffuzii, soedinennoy s vozrastaniem kolichestva veshchestva, i ego primenenie k odnoj biologicheskoj problème. Bull. MGU, Part A 1, 1.Google Scholar
  12. Malécot, G. (1969) The Mathematics of Heredity, W.H. Freeman, San Francisco, CA.Google Scholar
  13. Rodriguez-Ojea, M.A. and de la Osa, M.G. (1992) Paludismo y drepanocitosis. Correlation de aspestos clinicos y epidemiologicos. Revista Cubana de Mediana Tropical 44, 62–65.Google Scholar
  14. Shear, H.L., Roth, E.F., Jr, Fabry, M.E., Costantini, F.D., Pachnis, A., Hood, A. and Nagel, R.L. (1993) Transgenic mice expressing human sickle hemoglobin are partially resistant to rodent malaria. Blood 81, 222–226.PubMedGoogle Scholar

Copyright information

© Chapman & Hall 1997

Authors and Affiliations

  • Boris A. Veytsman
    • 1
  1. 1.Polymer Science ProgramThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations