From sympatry to parapatry: a rapid change in the spatial context of incipient allochronic speciation

  • Christian BurbanEmail author
  • Susana Rocha
  • Raphaël Leblois
  • Jean-Pierre Rossi
  • Laure Sauné
  • Manuela Branco
  • Carole Kerdelhué
Original Paper


Speciation is nowadays recognized as a dynamic process in which the respective roles of forces driving ecological differentiation and reproductive isolation can change through time and space. Incipient speciation events are particularly useful to follow such processes that are not tractable when considering well-differentiated taxa. A promising case study was discovered in the pine processionary moth, Thaumetopoea pityocampa, a Mediterranean defoliator of Pinus species, for which allochrony acting as an automatic magic trait was recognized as the major driver of an incipient speciation process. In Portugal, a unique population with a shifted phenology, known as the summer population (SP), co-occurs with a population following the typical life cycle, known as the winter population (WP). We monitored male activity of both populations in the Leiria region, i.e. over the whole SP distribution range using a systematic sampling along two transects, and studied Portuguese WPs at a larger geographical scale to explore their genetic diversity and spatial pattern of differentiation. Results showed that the WPs were genetically more diverse than the SP, with a strong pattern of isolation by distance both at large and small spatial scales, while the SP was very homogeneous over its whole range, without signature of its recent spatial expansion. Contrary to our expectations, no F1 hybrids were identified, even though we found an extended flight period of the SP, overlapping with the beginning of the WP reproductive period. Interestingly, the SP was found to be mostly limited to the sea shore where the WP is now scarce or absent, which could suggest competitive exclusion. Once clearly occurring in a sympatric context, the allochronic differentiation tends to develop nowadays in parapatry.


Allochronic speciation Phenology Sympatry Parapatry Hybridization Thaumetopoea pityocampa 



We thank Liliana Vilas Boas for her help with fieldwork and Helena Santos for technical advice during DNA extractions. We are grateful to Flora Abella who participated in DNA extractions. We acknowledge J. Rousselet (URZF, INRA Orléans, France) for providing the larvae from Varges. We are grateful to two anonymous reviewers for their helpful suggestions. Data used in this work were partly produced through the GenSeq molecular genetic analysis technical facilities of the Labex CeMEB, and ANR “Investissements d’Avenir” program (ANR-10-LABX-04-01). This study was partly financed by Fundação para a Ciência e Tecnologia, FCT-MCES, Portugal, (Project Pest-OE/AGR/UI0239/2011) and the Agence Nationale de la Recherche, France (Project GENO-SPACE ANR-16-CE02-0008). It was also supported by Susana Rocha Ph.D. scholarship with the reference SFRH/BD/90188/2012(FCT-MCES).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10682_2019_10021_MOESM1_ESM.docx (6.9 mb)
Supplementary material 1 (DOCX 7035 kb)


  1. A’Hara SW, Amouroux P, Argo EE et al (2012) Permanent genetic resources added to molecular ecology resources database 1 August 2011–30 September 2011. Mol Ecol Resour 12:185–189PubMedCrossRefGoogle Scholar
  2. Aguilée R, Lambert A, Claessen D (2011) Ecological speciation in dynamic landscapes. J Evol Biol 24:2663–2677PubMedCrossRefGoogle Scholar
  3. Anderson C, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedPubMedCentralGoogle Scholar
  4. Baack E (2004) Cytotype segregation on regional and microgeographic scales in snow buttercups (Ranunculus adoneus: Ranunculaceae). Am J Bot 91(11):1783–1788PubMedCrossRefGoogle Scholar
  5. Battisti A (1988) Host-plant relationships and population dynamics of the pine processionary caterpillar Thaumetopoea pityocampa (Denis and Schiffermüller). J Appl Entomol 105:393–402CrossRefGoogle Scholar
  6. Battisti A, Avci M, Avtzis DN et al (2015) Natural history of the processionary moths (Thaumetopoea spp.): new insights in relation to climate change. In: Roques A (ed) Processionary moths and climate change: an update. Springer, Dordrecht, pp 15–80Google Scholar
  7. Bolnik DI, Fitzpatrick BM (2007) Sympatric speciation: models and empirical evidence. Annu Rev Ecol Evol Syst 38:459–487CrossRefGoogle Scholar
  8. Bosc A (1999) Etude expérimentale du fonctionnement hydrique et carboné des organes aériens du Pin maritime (Pinus pinaster Ait.). Ph.D. Thesis, Université de Bordeaux 2, Bordeaux, FranceGoogle Scholar
  9. Branco M, Paiva M-R, Santos H, Burban C, Kerdelhué C (2017) Experimental evidence for heritable reproductive time in 2 allochronic populations of pine processionary moth. Insect Sci 24:325–335PubMedCrossRefGoogle Scholar
  10. Bull CM (1991) Ecology of parapatric distributions. Annu Rev Ecol Syst 22:19–36CrossRefGoogle Scholar
  11. Burban C, Gautier M, Leblois R, Landes J, Santos H, Paiva M-R, Branco M, Kerdelhué C (2016) Evidence for low-level hybridization between two allochronic populations of the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Notodontidae). Biol J Linn Soc 199:311–328CrossRefGoogle Scholar
  12. Burton TL, Husband BC (2000) Fitness differences among diploids, tetraploids and their triploid progeny in Chamerion angiistifolium (Onagraceae): mechanisms of inviability and implication for polyploid evolution. Evolution 54(4):1182–1191PubMedCrossRefPubMedCentralGoogle Scholar
  13. Butlin R, Galindo J, Grahame JW (2008) Sympatric, parapatric or allopatric: the most important way to classify speciation? Philos Trans R Soc B Biol Sci 363:2997–3007CrossRefGoogle Scholar
  14. Canestrelli D, Porreta D, Lowe WH, Bisconti R, Carere C, Nascetti G (2016) The tangled evolutionary legacies of range expansion and hybridization. Trends Ecol Evol 31(9):677–688PubMedCrossRefPubMedCentralGoogle Scholar
  15. Case TJ, Holt RD, McPeek MA, Keitt TH (2005) The community context of species’ borders: ecological and evolutionary perspectives. Oikos 108:28–40CrossRefGoogle Scholar
  16. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24(3):621–631PubMedCrossRefPubMedCentralGoogle Scholar
  17. Démolin G (1969) Comportement des adultes de Thaumetopoea pityocampa Schiff. Dispersion spatiale, importance écologique. Ann Sci For 26(1):81–102CrossRefGoogle Scholar
  18. Denno RF, McClure MS, Ott JR (1995) Interspecific interactions in phytophagous insects: competition reexamined and resurrected. Annu Rev Entomol 40:297–331CrossRefGoogle Scholar
  19. Dieckman U, Doebeli M, Metz JAJ, Tautz D (eds) (2004) Adaptive speciation. Cambridge University Press, CambridgeGoogle Scholar
  20. Durrett R, Buttel L, Harrison R (2000) Spatial models for hybrid zones. Heredity 84:9–19PubMedCrossRefPubMedCentralGoogle Scholar
  21. Earl DA, von Holdt BM (2012) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  22. Endler JA (1977) Geographic variation, speciation, and clines. Princeton University Press, PrincetonGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefPubMedCentralGoogle Scholar
  24. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50CrossRefGoogle Scholar
  25. Fisher-Reid MC, Engstrom TN, Kuczinsky CA, Stephens PR, Wiens JJ (2013) Parapatric divergence of sympatric morphs in a salamander: incipient speciation on Long Island? Mol Ecol 22:4681–4694PubMedCrossRefPubMedCentralGoogle Scholar
  26. Gavrilets S, Li H, Vose MD (2000) Patterns of parapatric speciation. Evolution 54(4):1126–1134PubMedCrossRefPubMedCentralGoogle Scholar
  27. Glaubitz JC (2004) CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310CrossRefGoogle Scholar
  28. Godefroid M, Rocha S, Santos H, Paiva M-R, Burban C, Kerdelhué C, Branco M, Rasplus J-Y, Rossi J-P (2016) Climate constrains range expansion of an allochronic population of the pine processionary moth. Divers Distrib 22(12):1288–1300CrossRefGoogle Scholar
  29. Gompert Z, Buerkle CA (2010) Introgress: a software package for mapping components of isolation in hybrids. Mol Ecol Resour 10:378–384PubMedCrossRefPubMedCentralGoogle Scholar
  30. Gröning J, Hochkirch A (2008) Reproductive interference between animal species. Q Rev Biol 33(3):257–282CrossRefGoogle Scholar
  31. Harrison RG (1990) Hybrid zones: windows on evolutionary process. Oxford Surv Evol Biol 7:69–128Google Scholar
  32. Hewitt GM (1989) The subdivision of species by hybrid zones. In: Otte D, Endler JA (eds) Speciation and its consequences. Sinauer, Sunderland, pp 85–110Google Scholar
  33. Hewitt GM (2011) Quaternary phylogeography: the roots of hybrid zones. Genetica 139:617–638PubMedCrossRefPubMedCentralGoogle Scholar
  34. Hodar JA, Torres-Muros L, Zamora R, Antonio J, Perez-Luque AJ, Senhadji K (2015) No evidence of induced defense after defoliation in three pine species against an expanding pest, the pine processionary moth. For Ecol Manag 356:166–172CrossRefGoogle Scholar
  35. Hoskin CJ, Higgie M (2010) Speciation via species interactions: the divergence of mating traits within species. Ecol Lett 13(4):409–420PubMedCrossRefPubMedCentralGoogle Scholar
  36. Ingram T (2011) Speciation along a depth gradient in a marine adaptive radiation. Proc R Soc Lond B 278:613–618CrossRefGoogle Scholar
  37. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kerdelhué C, Magnoux E, Lieutier F, Roques A, Rousselet J (2006) Comparative population genetic study of two oligophagous insects associated with the same hosts. Heredity 97(1):38–45PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kerdelhué C, Zane L, Simonato M, Salvato P, Rousselet J, Roques A, Battisti A (2009) Quaternary history and contemporary patterns in a currently expanding species. BMC Evol Biol 9:220PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kerdelhué C, Battisti A, Burban C et al (2015) Genetic diversity and structure at different spatial scales in the processionary moths. In: Roques A (ed) Processionary moths and climate change: an update. Springer, Dordrecht, pp 163–226Google Scholar
  41. Kisel Y, Barraclough TG (2010) Speciation has a spatial scale that depends on levels of gene flow. Am Nat 175(3):316–334PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–1191PubMedPubMedCentralCrossRefGoogle Scholar
  43. Leblois R, Rousset F, Estoup A (2004) Influence of spatial and temporal heterogeneities of the estimation of demographic parameters in a continuous population using individual microsatellite data. Genetics 166:1081–1092PubMedPubMedCentralCrossRefGoogle Scholar
  44. Leblois R, Gautier M, Rohfritsch A, Foucaud J, Burban C, Galan M, Loiseau A, Sauné L, Branco M, Gharbi K, Vitalis R, Kerdelhué C (2018) Deciphering the demographic history of allochronic differentiation in the pine processionary moth Thaumetopoea pityocampa. Mol Ecol 27:264–278PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lombardero MJ, Ayres MP, Bonello P, Cipollini D, Herms DA (2016) Effects of defoliation and site quality on growth and defenses of Pinus pinaster and P. radiate. Forest Ecol Manag 382:39–50CrossRefGoogle Scholar
  46. Matute DR, Coyne JA (2010) Intrinsic reproductive isolation between two sister species of Drosophila. Evolution 64(4):903–920PubMedCrossRefGoogle Scholar
  47. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  48. Mayr E (1963) Animal Species and Evolution. Belknap Press, CambridgeCrossRefGoogle Scholar
  49. Miller RS (1967) Pattern and process in competition. Adv Ecol Res 4:1–74CrossRefGoogle Scholar
  50. Nielsen EE, Bach L, Kotlicki P (2006) HYBRIDLAB (version 1.0): a program for generating simulated hybrids from population samples. Mol Ecol Notes 6:971–973CrossRefGoogle Scholar
  51. Nosil P (2012) Ecological speciation. Oxford series in ecology and evolution. Oxford University Press, OxfordCrossRefGoogle Scholar
  52. Nykänen H, Koricheva J (2004) Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis. Oikos 104:247–268CrossRefGoogle Scholar
  53. Paiva M-R, Mateus E, Santos MH, Branco MR (2011) Pine volatiles mediate host selection for oviposition by Thaumetopoea pityocampa (Lep., Notodontidae). J Appl Ent 135:195–203CrossRefGoogle Scholar
  54. Pettengill JB, Moeller DA (2012) Phylogeography of speciation: allopatric divergence and secondary contact between outcrossing and selfing Clarkia. Mol Ecol 21(18):4578–4592PubMedCrossRefPubMedCentralGoogle Scholar
  55. Pimentel C, Calvão T, Santos M, Ferreira C, Neves M, Nilsson JA (2006) Establishment and expansion of a Thaumetopoea pityocampa (Den. and Schiff.) (Lep. Notodontidae) population with a shifted life cycle in a production pine forest, Central-Coastal Portugal. For Ecol Manag 233:108–115CrossRefGoogle Scholar
  56. Pimentel CS, Ferreira C, Santos M, Calvão T (2017) Spatial patterns at host and forest stand scale and population regulation of the pine processionary moth Thaumetopoea pityocampa. Agric For Entomol 19:200–209CrossRefGoogle Scholar
  57. Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  58. Robinet C, Laparie M, Rousselet J (2015) Looking beyond the large scale effects of global change: local phenologies can result in critical heterogeneity in the pine processionary moth. Front Physiol 6:334PubMedPubMedCentralCrossRefGoogle Scholar
  59. Roitto M, Rautio P, Markkola A, Julkunen-Tiitto R, Varama M, Saravesi K, Tuomi J (2009) Induced accumulation of phenolics and sawfly performance in Scots pine in response to previous defoliation. Tree Physiol 29:207–216PubMedCrossRefPubMedCentralGoogle Scholar
  60. Roques A, Rousselet J, Avci M et al (2015) Climate warming and past and present distribution of the processionary moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa. In: Roques A (ed) Processionary moths and climate change: an update. Springer, Dordrecht, pp 81–161Google Scholar
  61. Rossi J-P, Garcia J, Roques A, Rousselet J (2016) Trees outside forest in agricultural landscapes: spatial distribution and impact on habitat connectivity for forest organisms. Landsc Ecol 31:243–254CrossRefGoogle Scholar
  62. Rousselet J, Magnoux E, Kerdelhué C (2004) Characterization of five microsatellite loci in the pine processionary moth Thaumetopoea pityocampa (Lepidoptera Notodontidae Thaumetopoeinae). Mol Ecol Notes 4:213–214CrossRefGoogle Scholar
  63. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145(4):1219–1228PubMedPubMedCentralGoogle Scholar
  64. Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62CrossRefGoogle Scholar
  65. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedPubMedCentralCrossRefGoogle Scholar
  66. Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352CrossRefGoogle Scholar
  67. Salvato P, Simonato M, Zan L, Patarnello T, Masutti L, Battisti A (2005) Do sexual pheromone traps provide biased information of the local gene pool in the pine processionary moth? Agric For Entomol 7(2):127–132CrossRefGoogle Scholar
  68. Samalens J-C, Rossi J-P (2011) Does landscape composition alter the spatiotemporal distribution of the pine processionary moth in a pine plantation forest? Popul Ecol 53:287–296CrossRefGoogle Scholar
  69. Santos H, Rousselet J, Magnoux E, Paiva M-R, Branco M, Kerdelhué C (2007) Genetic isolation through time: allochronic differentiation of a phenologically atypical population of the pine processionary moth. Proc R Soc Lond B 274:935–941CrossRefGoogle Scholar
  70. Santos H, Burban C, Rousselet J, Rossi J-P, Branco M, Kerdelhué C (2011a) Incipient allochronic speciation in the pine processionary moth Thaumetopoea pityocampa (Lepidoptera, Notodontidae). J Evol Biol 24:146–158PubMedCrossRefGoogle Scholar
  71. Santos H, Paiva M-R, Tavares C, Kerdelhué C, Branco M (2011b) Temperature niche shift observed in a Lepidoptera population under allochronic divergence. J Evol Biol 24:1897–1905PubMedCrossRefGoogle Scholar
  72. Santos HM, Paiva M-R, Rocha S, Kerdelhué C, Branco M (2013) Phenotypic divergence in reproductive traits of a moth population experiencing a phenological shift. Ecol Evol 3(15):5098–5108PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sauné L, Abella F, Kerdelhué C (2015) Isolation, characterization and PCR multiplexing of 17 microsatellite loci in the pine processionary moth Thaumetopoea pityocampa (Lepidoptera, Notodontidae). Conserv Genet Resour 7:755–757CrossRefGoogle Scholar
  74. Seehausen O, Terai Y, Magalhaes IS et al (2008) Speciation through sensory drive in cichlid fish. Nature 455(2):620–626PubMedCrossRefGoogle Scholar
  75. Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P (2011) Magic traits in speciation: ‘magic’ but not rare? Trends Ecol Evol 26:389–397PubMedCrossRefGoogle Scholar
  76. Stuessy TF, Weiss-Schneeweiss H, Keil D (2004) Diploid and polyploid cytotype distribution in Melampodium cinereum and M. leucanthum (Asteraceae, Heliantheae). Am J Bot 91(6):889–898PubMedCrossRefPubMedCentralGoogle Scholar
  77. Tamburini G, Marini L, Hellrigl K, Salvadori C, Battisti A (2013) Effects of climate and density-dependent factors on population dynamics of the pine processionary moth in the Southern Alps. Clim Change 121:701–712CrossRefGoogle Scholar
  78. Taylor RS, Friesen VL (2017) The role of allochrony in speciation. Mol Ecol 26:3330–3342PubMedCrossRefPubMedCentralGoogle Scholar
  79. Thibert-Plante X, Gavrilets S (2013) Evolution of mate choice and the so-called magic traits in ecological speciation. Ecol Lett 16:1004–1013PubMedPubMedCentralCrossRefGoogle Scholar
  80. Vähä J-P, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72PubMedCrossRefPubMedCentralGoogle Scholar
  81. Weinstein BG, Graham CH, Parra J (2017) The role of environment, dispersal and competition in explaining reduced co-occurrence among related species. PLoS ONE 12(11):e0185493PubMedPubMedCentralCrossRefGoogle Scholar
  82. Weiss-Schneeweiss H, Emadzade K, Jang T-S, Schneeweiss GM (2013) Evolutionary consequences, constraints and potential of polyploidy in Plants. Cytogenet Genome Res 140:137–150PubMedCrossRefPubMedCentralGoogle Scholar
  83. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.BIOGECO, INRAUniversity of BordeauxCestasFrance
  2. 2.CEF, Instituto Superior de Agronomia (ISA)Universidade de Lisboa (ULisboa)LisbonPortugal
  3. 3.CBGP, INRA, CIRAD, IRD, Montpellier SupAgroUniversity of MontpellierMontferriez-sur-LezFrance
  4. 4.Institut de Biologie ComputationnelleUniversity of MontpellierMontpellierFrance

Personalised recommendations