Evolutionary Ecology

, Volume 33, Issue 6, pp 825–838 | Cite as

Fitness costs of the cultivable symbiont Serratia symbiotica and its phenotypic consequences to aphids in presence of environmental stressors

  • Inès PonsEmail author
  • François Renoz
  • Thierry Hance
Original Paper


Associations between symbiotic microorganisms and animals are ubiquitous and hosts may benefit from hosting microbial communities through enhanced protection to environmental stresses or resource exploitation. Like many insects, aphids are hosts of a wide diversity of heritable symbionts that can be important drivers of their evolutionary ecology. Serratia symbiotica is one of the most common symbiont associated with aphids and includes a great variety of strains whose degree of interdependence on hosts varies significantly. Among these strains, some are gut-associated and have been isolated from aphids and cultivated. One of these strains (CWBI-2.3T) confers immediate protection against parasitoids. Here, we investigated additional associated phenotypes to elucidate the implication of cultivable S. symbiotica in the aphid evolutionary ecology. We show that under benign conditions, the aphids tended to suffer from reduced survival and fecundity when harboring the symbiont. We also demonstrate that gut infection with cultivable S. symbiotica does not protect aphids from the fungal pathogen Zoophtora occidentalis and from the lethal pathogen Serratia marcescens. However, while the bacterium is costly for aphids, this effect is no longer observed in the presence of the fungus, suggesting a negative effect of S. symbiotica on the latter. Our results further demonstrate that the cultivable S. symbiotica strain does not confer benefits to its hosts after the aphids were heat-stressed. These findings exposed that cultivable S. symbiotica does not have the same fitness effects on aphids as endosymbiotic strains, highlighting the significance of considering intraspecific variation of symbionts when studying their associated extended phenotypes.


Bacterial mutualism Facultative symbiosis Aphis fabae Ecological benefits Extended phenotype 



We are grateful to Christoph Vorburger who supplied the A06–407 clone Aphis fabae used in our experiments. We especially thank Richard Humber and the USDA ARS Collection of Entomopathogenic Fungal Cultures, who provided cultures of Z. occidentalis. We also thank the team of Nicolas Schtickzelle for technical facilities. This work was supported by the Fonds de la Recherche Scientifique (FNRS) through a Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA) (FRIA Grant No. 1.E014.17F). This paper is publication BRC 347 of the Biodiversity Research Center (Université catholique de Louvain).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035. CrossRefPubMedGoogle Scholar
  2. Altincicek B, ter Braak B, Laughton AM et al (2011) Escherichia coli K-12 pathogenicity in the pea aphid, Acyrthosiphon pisum, reveals reduced antibacterial defense in aphids. Dev Comp Immunol 35:1091–1097. CrossRefPubMedGoogle Scholar
  3. Barribeau SM, Parker BJ, Gerardo NM (2014) Exposure to natural pathogens reveals costly aphid response to fungi but not bacteria. Ecol Evol 4:488–493. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience Publishers, New YorkGoogle Scholar
  6. Burke G, Fiehn O, Moran N (2009) Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J 4:242–252. CrossRefPubMedGoogle Scholar
  7. Cambier V, Hance T, Hoffmann ED (2001) Effects of 1,4-benzoxazin-3-one derivatives from maize on survival and fecundity of Metopolophium dirhodum (Walker) on artificial diet. J Chem Ecol 27:359–370. CrossRefPubMedGoogle Scholar
  8. Cayetano L, Rothacher L, Simon J-C, Vorburger C (2015) Cheaper is not always worse: strongly protective isolates of a defensive symbiont are less costly to the aphid host. Proc R Soc Lond B Biol Sci 282:20142333. CrossRefGoogle Scholar
  9. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92. CrossRefPubMedGoogle Scholar
  10. Douglas AE (1998) Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria buchnera. Annu Rev Entomol 43:17–37. CrossRefPubMedGoogle Scholar
  11. Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol. CrossRefGoogle Scholar
  12. Duron O, Hurst GD (2013) Arthropods and inherited bacteria: from counting the symbionts to understanding how symbionts count. BMC Biol 11:45. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Engel MS (2015) Insect evolution. Curr Biol 25:R868–R872. CrossRefPubMedGoogle Scholar
  14. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735. CrossRefPubMedGoogle Scholar
  15. Ferrari J, Guo H, van Asch, et al (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance - Ferrari - 2004 - Ecological Entomology - Wiley Online Library. Accessed 8 Apr 2019
  16. Flyg C, Kenne K, Boman HG (1980) Insect Pathogenic properties of serratia marcescens: phage-resistant mutants with a decreased resistance to cecropia immunity and a decreased virulence to drosophila. Microbiology 120:173–181. CrossRefGoogle Scholar
  17. Foray V, Grigorescu AS, Sabri A et al (2014) Whole-genome sequence of Serratia symbiotica strain CWBI-2.3T, a free-living symbiont of the black bean aphid aphis fabae. Genome Announc 2:e00767-14. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fukatsu T, Nikoh N, Kawai R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: homoptera). Appl Environ Microbiol 66:2748–2758CrossRefGoogle Scholar
  19. Gehrer L, Vorburger C (2012) Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Lett. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grigorescu AS, Renoz F, Sabri A et al (2017) Accessing the hidden microbial diversity of aphids: an illustration of how culture-dependent methods can be used to decipher the insect microbiota. Microb Ecol. CrossRefPubMedGoogle Scholar
  21. Guo J, Hatt S, He K et al (2017) Nine facultative endosymbionts in aphids A review. J Asia-Pac Entomol. CrossRefGoogle Scholar
  22. Henry LM, Peccoud J, Simon J-C et al (2013) Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol 23:1713–1717. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Henry LM, Maiden MCJ, Ferrari J, Godfray HCJ (2015) Insect life history and the evolution of bacterial mutualism. Ecol Lett 18:516–525. CrossRefPubMedGoogle Scholar
  24. Hervé M (2011) GrapheR: a multiplatform GUI for drawing customizable graphs in R. The R Journal, vol 3/2. ISSN 2073-4859Google Scholar
  25. Heyworth ER, Ferrari J (2015) A facultative endosymbiont in aphids can provide diverse ecological benefits. J Evol Biol 28:1753–1760. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hothorn T (2007) The multcomp PackageGoogle Scholar
  27. Lamelas A, Gosalbes MJ, Manzano-Marín A et al (2011) Serratia symbiotica from the aphid Cinara cedri: a missing link from facultative to obligate insect endosymbiont. PLoS Genet 7:e1002357. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Leclair M, Pons I, Mahéo F et al (2016) Diversity in symbiont consortia in the pea aphid complex is associated with large phenotypic variation in the insect host. Evol Ecol 30:925–941. CrossRefGoogle Scholar
  29. Li P, Kwok AHY, Jiang J et al (2015) Comparative genome analyses of serratia marcescens FS14 reveals its high antagonistic potential. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Manzano-Marín A, Simon J-C, Latorre A (2016) Reinventing the wheel and making it round again: evolutionary convergence in Buchnera–Serratia symbiotic consortia between the distantly related lachninae aphids tuberolachnus salignus and cinara cedri. Genome Biol Evol 8:1440–1458. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195. CrossRefGoogle Scholar
  32. Moran NA, Russell JA, Koga R, Fukatsu T (2005) Evolutionary relationships of three new species of enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol 71:3302–3310. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. CrossRefPubMedGoogle Scholar
  34. Nakayama S, Parratt SR, Hutchence KJ et al (2015) Can maternally inherited endosymbionts adapt to a novel host? Direct costs of Spiroplasma infection, but not vertical transmission efficiency, evolve rapidly after horizontal transfer into D. melanogaster. Heredity 114:539–543. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nehme NT, Liégeois S, Kele B et al (2007) A model of bacterial intestinal infections in Drosophila melanogaster. PLoS Pathog 3:e173. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Niepoth N, Ellers J, Henry LM (2018) Symbiont interactions with non-native hosts limit the formation of new symbioses. BMC Evol Biol 18:27. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci 100:1803–1807. CrossRefPubMedGoogle Scholar
  38. Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc Lond B Biol Sci 275:293–299. CrossRefGoogle Scholar
  39. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266. CrossRefPubMedGoogle Scholar
  40. Oliver KM, Smith AH, Russell JA (2014) Defensive symbiosis in the real world—advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol 28:341–355. CrossRefGoogle Scholar
  41. Parker BJ, Spragg CJ, Altincicek B, Gerardo NM (2013) Symbiont-mediated protection against fungal pathogens in pea aphids: A role for pathogen specificity? Appl Environ Microbiol 79:2455–2458. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Polin, Simon J-C, Outreman Y (2014) An ecological cost associated with protective symbionts of aphids. Accessed 23 Dec 2018
  43. Pons I, Renoz F, Noël C, Hance T (2019a) Circulation of the cultivable symbiont Serratia symbiotica in aphids is mediated by plants. Front, MicrobiolCrossRefGoogle Scholar
  44. Pons I, Renoz F, Noël C, Hance T (2019b) New insights into the nature of symbiotic associations in aphids: infection process, biological effects and transmission mode of cultivable Serratia symbiotica bacteria. Appl Environ Microbiol AEM. CrossRefGoogle Scholar
  45. R Core Team (2018) A language and environment for statistical computing. R Core Development Team, Vienna RC TeamGoogle Scholar
  46. Renoz F, Noël C, Errachid A et al (2015) Infection dynamic of symbiotic bacteria in the pea aphid Acyrthosiphon pisum gut and host immune response at the early steps in the infection process. PLoS ONE 10:e0122099. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Renoz F, Champagne A, Degand H, Faber A-M, Morsomme P, Foray V, Hance T (2017) Toward a better understanding of the mechanisms of symbiosis: a comprehensive proteome map of a nascent insect symbiont. PeerJ 5:e3291. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Renoz F, Pons I, Vanderpoorten A et al (2018) Evidence for gut-associated Serratia symbiotica in wild aphids and ants provides new perspectives on the evolution of bacterial mutualism in insects. Microb Ecol. CrossRefPubMedGoogle Scholar
  49. Renoz F, Pons I, Hance T (2019) Evolutionary responses of mutualistic insect–bacterial symbioses in a world of fluctuating temperatures. Curr Opin Insect Sci 35:20–26. CrossRefPubMedGoogle Scholar
  50. Russell JA, Moran NA (2005) Horizontal transfer of bacterial symbionts: heritability and fitness effects in a novel aphid host. Appl Environ Microbiol 71:7987–7994. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc Biol Sci 273:603–610. CrossRefPubMedGoogle Scholar
  52. Sabri A, Leroy P, Haubruge E et al (2011) Isolation, pure culture and characterization of Serratia symbiotica sp. nov., the R-type of secondary endosymbiont of the black bean aphid Aphis fabae. Int J Syst Evol Microbiol 61:2081–2088. CrossRefPubMedGoogle Scholar
  53. Sachs JL, Skophammer RG, Regus JU (2011) Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci 108:10800–10807. CrossRefPubMedGoogle Scholar
  54. Salem H, Florez L, Gerardo N, Kaltenpoth M (2015) An out-of-body experience: the extracellular dimension for the transmission of mutualistic bacteria in insects. Proc R Soc Lond B Biol Sci 282:20142957. CrossRefGoogle Scholar
  55. Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781. CrossRefPubMedGoogle Scholar
  56. Selosse M-A (2001) La symbiose. Structures et fonctions, rôle écologique et évolutifGoogle Scholar
  57. Sicard M, Dittmer J, Grève P et al (2014) A host as an ecosystem: wolbachia coping with environmental constraints. Environ Microbiol 16:3583–3607. CrossRefPubMedGoogle Scholar
  58. Simon J-C, Boutin S, Tsuchida T et al (2011) Facultative symbiont infections affect aphid reproduction. PLoS ONE 6:e21831. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Skaljac M, Vogel H, Wielsch N et al (2019) Transmission of a Protease-secreting bacterial symbiont among pea aphids via host plants. Front, PhysiolCrossRefGoogle Scholar
  60. Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989. CrossRefPubMedGoogle Scholar
  61. Tsuchida T, Koga R, Horikawa M et al (2010) Symbiotic bacterium modifies aphid body color. Science 330:1102–1104. CrossRefPubMedGoogle Scholar
  62. Vorburger C, Sandrock C, Gouskov A et al (2009) Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host–parasitoid interaction. Evolution 63:1439–1450. CrossRefPubMedGoogle Scholar
  63. Vorburger C, Gehrer L, Rodriguez P (2010) A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biol Lett 6:109–111. CrossRefPubMedGoogle Scholar
  64. Vorburger C, Ganesanandamoorthy P, Kwiatkowski M (2013) Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol Evol 3:706–713. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wagner SM, Martinez AJ, Ruan Y-M et al (2015) Facultative endosymbionts mediate dietary breadth in a polyphagous herbivore. Funct Ecol 29:1402–1410. CrossRefGoogle Scholar
  66. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. CrossRefPubMedGoogle Scholar
  67. White JA, Giorgini M, Strand MR, Pennacchio F (2013) Arthropod endosymbiosis and evolution. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution. Springer, Berlin, pp 441–477CrossRefGoogle Scholar
  68. Zug R, Hammerstein P (2015) Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biol Rev 90:89–111. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Earth and Life Institute, Biodiversity Research CentreUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations