Advertisement

Evolutionary Ecology

, Volume 31, Issue 5, pp 785–801 | Cite as

Effects of parasite and historic driven selection on the diversity and structure of a MHC-II gene in a small mammal species (Peromyscus leucopus) undergoing range expansion

  • A. AndréEmail author
  • V. Millien
  • M. Galan
  • A. Ribas
  • J. R. Michaux
Original Paper

Abstract

Genetic diversity may decrease from the centre to the margin of a species distribution range due to neutral stochastic processes. Selection may also alter genetic diversity in non-neutral markers, such as genes associated with the immune system. Both neutral processes and selection on the immune system are thus expected to affect the spatial distribution of such markers, but the relative strength of each has been scarcely studied. Here, we compared the diversity of a neutral marker (mitochondrial cytochrome b) and a selected marker (DRB gene from the MHC-II), in eastern-North American populations of white-footed mice (Peromyscus leucopus), a species known for its role of main reservoir of the Lyme disease. We observed distinct phylogeographic patterns with these two markers, which may be the result of selection pressure acting upon the DRB gene. As predicted by the central marginal hypothesis, we observed a loss of neutral genetic diversity toward the margin of the species distribution. A decrease in diversity was also observed for the DRB gene, likely due to genetic drift and positive selection operated by helminth parasites. Such a loss in genetic diversity at the range margin may slow down the ongoing expansion of P. leucopus, by counterbalancing the effect of global warming on the mouse survival at higher latitude.

Keywords

Cytochrome-b gene Major histocompatibility complex diversity Peromyscus leucopus Helminths 

Notes

Acknowledgements

We thank the Smithsonian National Museum of Natural History and the Harvard Museum of Natural History for the loan of some tissue samples. We thank S. Leo, S. Turney, field assistants and land owners. Computational resources were provided by the CBGP HPC computational platform, and by the Consortium des Équipements de Calcul Intensif (CÉCI) funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11. This work was supported by Belgian FRS-FNRS (Fonds de la Recherche Scientifique) fellowship to AA and to JRM and by financial grants from the Belgian FRS-FNRS (‘‘credits pour brefs séjours à l’étranger’’) to AA and JRM, and from the “Patrimoine de l’université de Liège” to AA. VM is supported by a NSERC DG Grant (RGPIN/341918-2012).

Supplementary material

10682_2017_9898_MOESM1_ESM.xlsx (33 kb)
Table S1 contains both Cytb and DRB sequences as well as individual genotypes and parasitology. (XLSX 32 kb)

References

  1. Adams RI, Hadly EA (2012) Genetic diversity within vertebrate species is greater at lower latitudes. Evol Ecol 27:133–143CrossRefGoogle Scholar
  2. Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364(6432):33–39CrossRefPubMedGoogle Scholar
  3. Brussard PF (1984) Geographic patterns and environmental gradients: the central-marginal model in Drosophila revisited. Annu Rev Ecol Syst 15:25–64CrossRefGoogle Scholar
  4. Chen W, Bei Y, Li H (2015) Genetic variation of the major histocompatibility complex (MHC class II B gene) in the threatened Hume’s pheasant, Syrmaticus humiae. PLoS ONE 10:e0116499CrossRefPubMedPubMedCentralGoogle Scholar
  5. Common J, Di W, Davies D, Kelsell D (2004) Further evidence for heterozygote advantage of GJB2 deafness mutations: a link with cell survival. J Med Genet 41:573–575CrossRefPubMedPubMedCentralGoogle Scholar
  6. Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52CrossRefPubMedGoogle Scholar
  7. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  8. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188CrossRefPubMedGoogle Scholar
  9. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  10. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  11. Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501CrossRefGoogle Scholar
  12. Fiset J, Tessier N, Millien V, Lapointe FJ (2015) Phylogeographic structure of the white-footed mouse and the deer mouse, two lyme disease reservoir hosts in Quebec. PLoS ONE 10:e0144112CrossRefPubMedPubMedCentralGoogle Scholar
  13. Froeschke G, Sommer S (2005) MHC class II DRB variability and parasite load in the striped mouse (Rhabdomys pumilio) in the Southern Kalahari. Mol Biol Evol 22:1254–1259CrossRefPubMedGoogle Scholar
  14. Gaitan J, Millien V (2016) Stress level, parasite load, and movement pattern in a small mammal reservoir host for Lyme disease. Can J Zool 94:565–573CrossRefGoogle Scholar
  15. Galan M, Guivier E, Caraux G, Charbonnel N, Cosson JF (2010) A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genom 11(1):296CrossRefGoogle Scholar
  16. Gassert F, Schulte U, Husemann M, Ulrich W, Rödder D, Hochkirch A, Engel E, Meyer J, Habel JC, Parmakelis A (2013) From southern refugia to the northern range margin: genetic population structure of the common wall lizard, Podarcis muralis. J Biogeogr 40(8):1475–1489Google Scholar
  17. Harf R, Sommer S (2005) Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol Ecol 14:85–91CrossRefPubMedGoogle Scholar
  18. Hedrick PW (2012) What is the evidence for heterozygote advantage selection? Trends Ecol Evol 27:698–704CrossRefPubMedGoogle Scholar
  19. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  20. Hoffmann AA, Blows MW (1994) Species borders: ecological and evolutionary perspectives. Trends Ecol Evol 9:223–227CrossRefPubMedGoogle Scholar
  21. Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA 86:958–962CrossRefPubMedPubMedCentralGoogle Scholar
  22. Johansson M, Primmer CR, Merila J (2006) History vs. current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983CrossRefPubMedGoogle Scholar
  23. Jukes TH, Cantor CR (1969) Evolution of protein molecules. Academy Press, New YorkCrossRefGoogle Scholar
  24. Klein J (1987) Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol 19:155–162CrossRefPubMedGoogle Scholar
  25. Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DI (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219PubMedGoogle Scholar
  26. Kocher TD, Thomas WK, Meyer A, Edwards SV, Paabo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kohyama TI, Omote K, Nishida C, Takenaka T, Saito K, Fujimoto S, Masuda R (2015) Spatial and temporal variation at major histocompatibility complex class IIB genes in the endangered Blakiston’s fish owl. Zool Lett 1:13CrossRefGoogle Scholar
  28. Lau Q, Jaratlerdsiri W, Griffith JE, Gongora J, Higgins DP (2014) MHC class II diversity of koala (Phascolarctos cinereus) populations across their range. Heredity 113:287–296CrossRefPubMedPubMedCentralGoogle Scholar
  29. Ledevin R, Millien V (2013) Congruent morphological and genetic differentiation as a signature of range expansion in a fragmented landscape. Ecol Evol 3:4172–4182CrossRefPubMedPubMedCentralGoogle Scholar
  30. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefPubMedGoogle Scholar
  31. Lönn M, Prentice HC (2002) Gene diversity and demographic turnover in central and peripheral populations of the perennial herb Gypsophila fastigiata. Oikos 99:489–498CrossRefGoogle Scholar
  32. Marrotte RR, Gonzalez A, Millien V (2014) Landscape resistance and habitat combine to provide an optimal model of genetic structure and connectivity at the range margin of a small mammal. Mol Ecol 23:3983–3998CrossRefPubMedGoogle Scholar
  33. Mather TN (1993) The dynamics of spirochete transmission between ticks and vertebrates. Ecology and environmental management of Lyme disease. Rutgers University Press, New Brunswick, pp 43–62Google Scholar
  34. Meglecz E, Piry S, Desmarais E, Galan M, Gilles A, Guivier E, Pech N, Martin JF (2011) SESAME (SEquence Sorter & AMplicon Explorer): genotyping based on high-throughput multiplex amplicon sequencing. Bioinformatics 27:277–278CrossRefPubMedGoogle Scholar
  35. Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243CrossRefPubMedGoogle Scholar
  36. Michaux JR, Magnanou E, Paradis E, Nieberding C, Libois R (2003) Mitochondrial phylogeography of the woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Mol Ecol 12:685–697CrossRefPubMedGoogle Scholar
  37. Michaux JR, Libois R, Filippucci MG (2005) So close and so different:comparative phylogeography of two small mammal species, theYellownecked fieldmouse (Apodemus flavicollis) and the Woodmouse(Apodemus sylvaticus), in the Western Palearctic region. Heredity 94:52–63CrossRefPubMedGoogle Scholar
  38. Mouton A, Mortelliti A, Grill A, Sara M, Kryštufek B, Juškaitis R, Latinne A, Amori G, Randi E, Büchner S, Schulz B, Ehlers S, Lang J, Adamik P, Verbeylen G, Dorenbosch M, Trout R, Elmeros M, Aloise G, Mazzoti S, Matur F, Poitevin F, Michaux JR (2017) Evolutionary history and species delimitations: a case study of the hazel dormouse, Muscardinus avellanarius. Conserv Genet 18(1):181–196Google Scholar
  39. Musolf K, Meyer-Lucht Y, Sommer S (2004) Evolution of MHC-DRB class II polymorphism in the genus Apodemus and a comparison of DRB sequences within the family Muridae (Mammalia: Rodentia). Immunogenetics 56:420–426CrossRefPubMedGoogle Scholar
  40. Myers P, Lundrigan BL, Hoffman SMG, Haraminac AP, Seto SH (2009) Climate-induced changes in the small mammal communities of the Northern Great Lakes Region. Glob Change Biol 15:1434–1454CrossRefGoogle Scholar
  41. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  42. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefPubMedGoogle Scholar
  43. Oliver MK, Lambin X, Cornulier T, Piertney SB (2009) Spatio-temporal variation in the strength and mode of selection acting on major histocompatibility complex diversity in water vole (Arvicola terrestris) metapopulations. Mol Ecol 18:80–92PubMedGoogle Scholar
  44. Ostfeld RS (2011) Lyme disease: the ecology of a complex system. Oxford University Press, Oxford, p 216Google Scholar
  45. Parham P, Ohta T (1996) Population biology of antigen presentation by MHC class I molecules. Science 272:67–74CrossRefPubMedGoogle Scholar
  46. Penn DJ, Damjanovich K, Potts WK (2002) MHC heterozygosity confers a selective advantage against multiple-strain infections. Proc Natl Acad Sci USA 99:11260–11264CrossRefPubMedPubMedCentralGoogle Scholar
  47. Phillips BL, Kelehear C, Pizzatto L, Brown GP, Barton D, Shine R (2010) Parasites and pathogens lag behind their host during periods of host range advance. Ecology 91:872–881CrossRefPubMedGoogle Scholar
  48. Pironon S, Papuga G, Villellas J, Angert AL, García MB, Thompson JD (2016) Geographic variation in genetic and demographic performance: new insights from an old biogeographical paradigm. Biol Rev. doi: 10.1111/brv.12313 PubMedGoogle Scholar
  49. Prakash S, Lewontin RC, Hubby JL (1969) A molecular approach to the study of genic heterozygosity in natural populations. IV. Patterns of genic variation in central, marginal and isolated populations of Drosophila pseudoobscura. Genetics 61:841–858PubMedPubMedCentralGoogle Scholar
  50. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  51. Quinnell RJ, Kennedy LJ, Barnes A, Courtenay O, Dye C, Garcez LM, Shaw MA, Carter SD, Thomson W, Ollier WE (2003) Susceptibility to visceral leishmaniasis in the domestic dog is associated with MHC class II polymorphism. Immunogenetics 55:23–28PubMedGoogle Scholar
  52. Rogic A, Tessier N, Legendre P, Lapointe FJ, Millien V (2013) Genetic structure of the white-footed mouse in the context of the emergence of Lyme disease in southern Quebec. Ecol Evol 3:2075–2088CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rowe KC, Heske EJ, Paige KN (2006) Comparative phylogeography of eastern chipmunks and white-footed mice in relation to the individualistic nature of species. Mol Ecol 15:4003–4020CrossRefPubMedGoogle Scholar
  54. Roy-Dufresne E, Logan T, Simon JA, Chmura GL, Millien V (2013) Poleward expansion of the white-footed mouse Peromyscus leucopus under climate change: implications for the spread of Lyme disease. PLoS ONE 8:e80724CrossRefPubMedPubMedCentralGoogle Scholar
  55. Schad J, Ganzhorn JU, Sommer S (2005) Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 59:439–450CrossRefPubMedGoogle Scholar
  56. Schroeder SA, Gaughan DM, Swift M (1995) Protection against bronchial asthma by CFTR [Delta]F508 mutation: a heterozygote advantage in cystic fibrosis. Nat Med 1:703–705CrossRefPubMedGoogle Scholar
  57. Simon JA, Marrotte RR, Desrosiers N, Fiset J, Gaitan J, Gonzalez A, Koffi JK, Lapointe F-J, Leighton PA, Lindsay LR, Logan T, Milord F, Ogden NH, Rogic A, Roy-Dufresne E, Suter D, Tessier N, Millien V (2014) Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution. Evol Appl 7:750–764CrossRefPubMedPubMedCentralGoogle Scholar
  58. Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16. doi: 10.1186/1742-9994-2-16 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc Lond B Biol Sci 277(1684):979–988CrossRefGoogle Scholar
  60. Takahata N, Nei M (1990) Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics 124:967–978PubMedPubMedCentralGoogle Scholar
  61. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  62. Turner AK, Begon M, Jackson JA, Bradley JE, Paterson S (2011) Genetic diversity in cytokines associated with immune variation and resistance to multiple pathogens in a natural rodent population. PLoS Genet 7:e1002343CrossRefPubMedPubMedCentralGoogle Scholar
  63. Worley K, Collet J, Spurgin LG, Cornwallis C, Pizzari T, Richardson DS (2010) MHC heterozygosity and survival in red junglefowl. Mol Ecol 19:3064–3075CrossRefPubMedGoogle Scholar
  64. Zeisset I, Beebee TJ (2014) Drift rather than selection dominates MHC class II allelic diversity patterns at the biogeographical range scale in natterjack toads Bufo calamita. PLoS ONE 9:e100176CrossRefPubMedPubMedCentralGoogle Scholar
  65. Zhang M, He H (2013) Parasite-mediated selection of major histocompatibility complex variability in wild brandt’s voles (Lasiopodomys brandtii) from Inner Mongolia, China. BMC Evol Biol 13:149CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Conservation Genetics LaboratoryUniversity of LiègeLiègeBelgium
  2. 2.Redpath MuseumMcGill UniversityMontrealCanada
  3. 3.INRA, UMR CBGP, (INRA/IRD/Cirad/Montpellier SupAgro)Montferrier-sur-Lez CedexFrance
  4. 4.Section of Parasitology, Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food SciencesUniversity of BarcelonaBarcelonaSpain
  5. 5.CIRAD, UR AGIRsMontpellierFrance

Personalised recommendations