Evolutionary Ecology

, Volume 30, Issue 6, pp 991–1007 | Cite as

Drivers of animal migration and implications in changing environments

Article

Abstract

Migratory species are widespread in terrestrial, aquatic and aerial environments, and are important both ecologically and economically. Since migration is an adaptive response to particular conditions, environmental changes (climate or otherwise) will potentially alter the selective pressures on movement behavior. Such changes may also interfere with, or disrupt, a species’ ability to migrate. In either case, environmental changes could lead to the reduction or total loss of a migration, yet we have little understanding of when to expect these outcomes to occur. Here, I argue that an understanding of both the proximate and ultimate drivers of migration is needed if we are to predict the fate of migrations under changing environmental conditions. I review what is currently known about the drivers of animal migration, but show that we also need a more complete synthesis of migratory patterns across diverse ecosystems and taxonomic groups. The current understanding of migration indicates that (1) drivers of migration vary across species and ecosystems, and (2) a species’ ability to adapt to environmental change successfully depends in part on its migration drivers. Together, these findings suggest a way forward for studying and generating predictions of how changing environmental conditions will differentially impact species by taxonomic group and geographic region of the world.

Keywords

Climate change El Niño-Southern Oscillation index Evolution Life history Migration Movement ecology Partial migration 

References

  1. Arkhipkin AI, Middleton DAJ, Sirota AM, Grzebielec R (2004) The effect of Falkland Current inflows on offshore ontogenetic migrations of the squid Loligo gahi on the southern shelf of the Falkland Islands. Estuar Coast Shelf Sci 60:11–22. doi:10.1016/j.ecss.2003.11.016 CrossRefGoogle Scholar
  2. Avgar T, Street G, Fryxell JM (2014) On the adaptive benefits of mammal migration. Can J Zool 92:481–490. doi:10.1139/cjz-2013-0076 CrossRefGoogle Scholar
  3. Báez JC, Bellido JJ, Ferri-Yáñez F et al (2011) The North Atlantic Oscillation and sea surface temperature affect loggerhead abundance around the Strait of Gibraltar. Sci Mar 75:571–575CrossRefGoogle Scholar
  4. Bauer S, Hoye BJ (2014) Migratory animals couple biodiversity and ecosystem functioning worldwide. Science. doi:10.1126/science.1242552 Google Scholar
  5. Beebee TJC (1995) Amphibian breeding and climate. Nature 374:219–220CrossRefGoogle Scholar
  6. Berthold P (2001) Bird migration: a general survey, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  7. Bildstein KL (2006) Migrating raptors of the world: their ecology and conservation. Cornell University Press, IthacaGoogle Scholar
  8. Blake S, Yackulic CB, Cabrera F et al (2012) Vegetation dynamics drive segregation by body size in Galapagos tortoises migrating across altitudinal gradients. J Anim Ecol 82:310–321. doi:10.1111/1365-2656.12020 PubMedCrossRefGoogle Scholar
  9. Bock BC, Rand AS, Burghardt GM (1985) Seasonal migration and nesting site fidelity in the green iguana. Contrib Mar Sci 37:435–443Google Scholar
  10. Bolger DT, Newmark WD, Morrison TA, Doak DF (2008) The need for integrative approaches to understand and conserve migratory ungulates. Ecol Lett 11:63–77. doi:10.1111/j.1461-0248.2007.01109.x PubMedGoogle Scholar
  11. Bonte D, Maelfait J-P, Hoffmann M (2000) Seasonal and diurnal migration patterns of the spider (Araneae) fauna of coastal grey dunes. Ekol (Bratisl) 19:5–16Google Scholar
  12. Boone RB, Thirgood SJ, Hopcraft JGC (2006) Serengeti wildebeest migratory patterns modeled from rainfall and new vegetation growth. Ecology 87:1987–1994PubMedCrossRefGoogle Scholar
  13. Boyle WA, Norris DR, Guglielmo CG (2010) Storms drive altitudinal migration in a tropical bird. Proc R Soc Lond B Biol Sci 277:2511–2519. doi:10.1098/rspb.2010.0344 CrossRefGoogle Scholar
  14. Brodersen J, Nilsson PA, Hansson L-A et al (2008) Condition-dependent individual decision-making determines cyprinid partial migration. Ecology 89:1195–1200PubMedCrossRefGoogle Scholar
  15. Brower LP, Malcolm SB (1991) Animal migrations: endangered phenomena. Am Zool 31:265–276CrossRefGoogle Scholar
  16. Brown GP, Brooks RJ (1994) Characteristics of and fidelity to hibernacula in a northern population of snapping turtles, Chelydra serpentina. Copeia 1994:222. doi:10.2307/1446689 CrossRefGoogle Scholar
  17. Bull JJ, Shine R (1979) Iteroparous animals that skip opportunities for reproduction. Am Nat 114(2):296–303CrossRefGoogle Scholar
  18. Chambers LE, Hughes L, Weston MA (2005) Climate change and its impact on Australia’s avifauna. Emu 105:1–20. doi:10.1071/MU04033 CrossRefGoogle Scholar
  19. Chapman BB, Brönmark C, Nilsson J (2011) The ecology and evolution of partial migration. Oikos 120:1764–1775CrossRefGoogle Scholar
  20. Chapman BB, Skov C, Hulthén K et al (2012) Partial migration in fishes: definitions, methodologies and taxonomic distribution. J Fish Biol 81:479–499. doi:10.1111/j.1095-8649.2012.03349.x PubMedCrossRefGoogle Scholar
  21. Chapman JW, Reynolds DR, Wilson K (2015) Long-range seasonal migration in insects: mechanisms, evolutionary drivers and ecological consequences. Ecol Lett 18:287–302. doi:10.1111/ele.12407 PubMedCrossRefGoogle Scholar
  22. Chelini M-C, Willemart RH, Gnaspini P (2011) Caves as a winter refuge by a Neotropical harvestman (Arachnida, Opiliones). J Insect Behav 24:393–398. doi:10.1007/s10905-011-9264-x CrossRefGoogle Scholar
  23. Cohen DS (1967) Optimization of seasonal migratory behavior. Am Nat 101:5–17. doi:10.2307/2459211 CrossRefGoogle Scholar
  24. Common IFB (1954) A study of the ecology of the adult bogong moth, Agrotis infusa (Boisd) (Lepidoptera: Noctuidae), with special reference to its behaviour during migration and aestivation. Aust J Zool 2:223–263CrossRefGoogle Scholar
  25. Craig PC, Poulin VA (1975) Movements and growth of Arctic grayling (Thymallus arcticus) and juvenile Arctic char (Salvelinus alpinus) in a small arctic stream, Alaska. J Fish Res Board Can 32:689–697CrossRefGoogle Scholar
  26. Dingle H (1996) Migration: the biology of life on the move, 1st edn. Oxford University Press, OxfordGoogle Scholar
  27. Dingle H (2014) Migration: the biology of life on the move, 2nd edn. Oxford University Press, OxfordCrossRefGoogle Scholar
  28. Durant SM, Caro TM, Collins DA et al (1988) Migration patterns of Thomson’s gazelles and cheetahs on the Serengeti Plains. Afr J Ecol 26:257–268CrossRefGoogle Scholar
  29. Engstedt O, Stenroth P, Larsson P et al (2010) Assessment of natal origin of pike (Esox lucius) in the Baltic Sea using Sr: Ca in otoliths. Environ Biol Fishes 89:547–555. doi:10.1007/s10641-010-9686-x CrossRefGoogle Scholar
  30. Fancy SG, Pank LF, Whitten KR, Regelin WL (1989) Seasonal movements of caribou in arctic Alaska as determined by satellite. Can J Zool 67:644–650CrossRefGoogle Scholar
  31. Fleming TH, Eby P (2003) Ecology of bat migration. Bat ecology. University of Chicago Press, ChicagoGoogle Scholar
  32. Fryxell JM, Greever J, Sinclair ARE (1988) Why are migratory ungulates so abundant? Am Nat 131:781–798CrossRefGoogle Scholar
  33. George RW (2005) Evolution of life cycles, including migration, in spiny lobsters (Palinuridae). N Z J Mar Freshw Res 39:503–514CrossRefGoogle Scholar
  34. Gillis EA, Green DJ, Middleton HA, Morrissey CA (2008) Life history correlates of alternative migratory strategies in American Dippers. Ecology 89:1687–1695PubMedCrossRefGoogle Scholar
  35. Gilpin J (1786) Observations on the annual passage of herrings. Trans Am Philos Soc. doi:10.2307/1005192 Google Scholar
  36. Gorbach KR, Benbow ME, McIntosh MD, Burky AJ (2012) Dispersal and upstream migration of an amphidromous neritid snail: implications for restoring migratory pathways in tropical streams—neritidae dispersal and upstream migration. Freshw Biol 57:1643–1657. doi:10.1111/j.1365-2427.2012.02826.x CrossRefGoogle Scholar
  37. Gresh T, Lichatowich J, Schoonmaker P (2000) An estimation of historic and current levels of salmon production in the Northeast Pacific ecosystem: evidence of a nutrient deficit in the freshwater systems of the Pacific Northwest. Fisheries 25:15–21. doi:10.1577/1548-8446(2000)025<0015:AEOHAC>2.0.CO;2 CrossRefGoogle Scholar
  38. Griswold CK, Taylor CM, Norris DR (2011) The equilibrium population size of a partially migratory population and its response to environmental change. Oikos 120:1847–1859. doi:10.1111/j.1600-0706.2011.19435.x CrossRefGoogle Scholar
  39. Gross MR, Coleman RM, McDowall RM (1988) Aquatic productivity and the evolution of diadromous fish migration. Science 239:1291–1293PubMedCrossRefGoogle Scholar
  40. Gutiérrez D, Wilson RJ (2014) Climate conditions and resource availability drive return elevational migrations in a single-brooded insect. Oecologia 175:861–873PubMedCrossRefGoogle Scholar
  41. Harden Jones FR (1968) Fish migration. Edward Arnold Publishers, LondonGoogle Scholar
  42. Harris G, Thirgood SJ, Hopcraft JGC et al (2009) Global decline in aggregated migrations of large terrestrial mammals. Endanger Species Res 7:55–76. doi:10.3354/esr00173 CrossRefGoogle Scholar
  43. Hartnoll RG, Mackintosh T, Pelembe TJ (2006) Johngarthia lagostoma (H. Milne Edwards, 1837) on Ascension Island: a very isolated land crab population. Crustaceana 79:197–215CrossRefGoogle Scholar
  44. Hays GC (2000) The implications of variable remigration intervals for the assessment of population size in marine turtles. J Theor Biol 206:221–227PubMedCrossRefGoogle Scholar
  45. Heape W (1931) Emigration, migration and nomadism. Heffer and Sons, CambridgeGoogle Scholar
  46. Hebblewhite M, Merrill EH (2009) Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90:3445–3454PubMedCrossRefGoogle Scholar
  47. Hicks JW (1985) The breeding behaviour and migrations of the terrestrial crab Gecarcoidea natalis (Decapoda: Brachyura). Aust J Zool 33:127–142CrossRefGoogle Scholar
  48. Hiddink JG (2003) Modelling the adaptive value of intertidal migration and nursery use in the bivalve Macoma balthica. Mar Ecol Prog Ser 252:173–185CrossRefGoogle Scholar
  49. Holland RA, Wikelski M, Wilcove DS (2006) How and why do insects migrate? Science 313:794–796PubMedCrossRefGoogle Scholar
  50. Huse G, Fernö A, Holst JC (2010) Establishment of new wintering areas in herring co-occurs with peaks in the “first time/repeat spawner” ratio. Mar Ecol Prog Ser 409:189–198CrossRefGoogle Scholar
  51. Inouye D, Barr B, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci USA 97:1630–1633PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jahn AE, Levey DJ, Smith KG (2004) Reflections across hemispheres: a system-wide approach to New World bird migration. Auk 121:1005–1013CrossRefGoogle Scholar
  53. Jenni L, Kéry M (2003) Timing of autumn bird migration under climate change: advances in long-distance migrants, delays in short-distance migrants. Proc R Soc Lond B Biol Sci 270:1467–1471. doi:10.1098/rspb.2003.2394 CrossRefGoogle Scholar
  54. Kawabata A, Yatsu A, Ueno Y et al (2006) Spatial distribution of the Japanese common squid, Todarodes pacificus, during its northward migration in the western North Pacific Ocean. Fish Oceanogr 15:113–124. doi:10.1111/j.1365-2419.2006.00356.x CrossRefGoogle Scholar
  55. Kay WR (2004) Movements and home ranges of radio-tracked Crocodylus porosus in the Cambridge Gulf region of Western Australia. Wildl Res 31:495–508. doi:10.1071/WR04037 CrossRefGoogle Scholar
  56. Kelleher KE, Tester JR (1969) Homing and survival in the Manitoba toad, Bufo hemiophrys, in Minnesota. Ecology 50:1040–1048. doi:10.2307/1936895 CrossRefGoogle Scholar
  57. Keller S, Valls M, Hidalgo M, Quetglas A (2014) Influence of environmental parameters on the life-history and population dynamics of cuttlefish Sepia officinalis in the western Mediterranean. Estuar Coast Shelf Sci 145:31–40. doi:10.1016/j.ecss.2014.04.016 CrossRefGoogle Scholar
  58. Kobari T, Ikeda T (2001) Ontogenetic vertical migration and life cycle of Neocalanus plumchrus (Crustacea: Copepoda) in the Oyashio region, with notes on regional variations in body sizes. J Plankton Res 23:287–302CrossRefGoogle Scholar
  59. Lack D (1943) The problem of partial migration. Br Birds Lond 37:122–130Google Scholar
  60. Lack D (1944) The problem of partial migration (concluded). Br Birds Lond 37:143–150Google Scholar
  61. Lack D (1954) The natural regulation of animal numbers. Oxford University Press, OxfordGoogle Scholar
  62. Lamoureux VS, Madison DM (1999) Overwintering habitats of radio-implanted green frogs, Rana clamitans. J Herpetol 33:430–435CrossRefGoogle Scholar
  63. Lehikoinen E, Sparks TH, Zalakevicius M (2004) Arrival and departure dates. Adv Ecol Res 35:1–31. doi:10.1016/S0065-2504(04)35001-4 CrossRefGoogle Scholar
  64. Lehikoinen A, Kilpi M, Öst M (2006) Winter climate affects subsequent breeding success of common eiders. Glob Change Biol 12:1355–1365CrossRefGoogle Scholar
  65. Lehodey P, Alheit J, Barange M et al (2006) Climate variability, fish, and fisheries. J Clim 19:5009–5030CrossRefGoogle Scholar
  66. Liu H-C, Jeng M-S (2005) Reproduction of Epigrapsus notatus (Brachyura: Gecarcinidae) in Taiwan. J Crustac Biol 25:135–140CrossRefGoogle Scholar
  67. Liu H-C, Jeng M-S (2007) Some reproductive aspects of Gecarcoidea lalandii (Brachyura: Gecarcinidae) in Taiwan. Zool Stud 46:347–354Google Scholar
  68. Lockyer CH, Brown SG (1981) The migration of whales. In: Aidley DJ (ed) Animal migration. Cambridge Univ Press, Cambridge, pp 105–137Google Scholar
  69. Lucas MC, Baras E (2001) Migration of freshwater fishes. Blackwell Science Ltd, OxfordCrossRefGoogle Scholar
  70. Lundberg P (1987) Partial bird migration and evolutionarily stable strategies. J Theor Biol 125:351–360CrossRefGoogle Scholar
  71. Luschi P, Hays GC, Papi F (2003) A review of long-distance movements by marine turtles, and the possible role of ocean currents. Oikos 103:293–302CrossRefGoogle Scholar
  72. Macmynowski DP, Root TL, Ballard G, Geupel GR (2007) Changes in spring arrival of Nearctic-Neotropical migrants attributed to multiscalar climate. Glob Change Biol 13:2239–2251CrossRefGoogle Scholar
  73. Madsen T, Shine R (1996) Seasonal migration of predators and prey: a study of pythons and rats in tropical Australia. Ecology 77:149–156CrossRefGoogle Scholar
  74. McDowall RM (1987) The occurrence and distribution of diadromy among fishes. Am Fish Soc Symp 1:1–13Google Scholar
  75. McDowall RM (2007) On amphidromy, a distinct form of diadromy in aquatic organisms. Fish Fish 8:1–13CrossRefGoogle Scholar
  76. McGuire LP, Boyle WA (2013) Altitudinal migration in bats: evidence, patterns, and drivers. Biol Rev 88:767–786. doi:10.1111/brv.12024 PubMedCrossRefGoogle Scholar
  77. McNeil JN (1987) The true armyworm, Pseudaletia unipuncta: a victim of the pied piper or a seasonal migrant? Insect Sci Appl 8:591–597Google Scholar
  78. Moore JA, Daugherty CH, Nelson NJ (2009) Large male advantage: phenotypic and genetic correlates of territoriality in tuatara. J Herpetol 43:570–578. doi:10.1670/08-290.1 CrossRefGoogle Scholar
  79. Newton I (2008) The migration ecology of birds. Academic Press, AmsterdamGoogle Scholar
  80. Nikolsky GV (1963) The ecology of fishes. Academic Press, New York CityGoogle Scholar
  81. Northcote TG (1978) Migratory strategies and production in freshwater fishes. In: Gerking SD (ed) Ecology of freshwater fish production. Wiley, New York, pp 326–359Google Scholar
  82. Ouboter PE, Nanhoe LMR (1988) Habitat selection and migration of Caiman crocodilus crocodilus in a swamp and swamp-forest habitat in northern Suriname. J Herpetol 22:283–294. doi:10.2307/1564151 CrossRefGoogle Scholar
  83. Pachauri RK, Mayer L, Intergovernmental Panel on Climate Change (eds) (2015) Climate change 2014: synthesis report. Intergovernmental Panel on Climate Change, GenevaGoogle Scholar
  84. Paulini E (1963) Field observations on the upstream migration of Australorbis glabratus. Bull World Health Organ 29:838–841PubMedPubMedCentralGoogle Scholar
  85. Pinshow B, Fedak MA, Battles DR, Schhmidt-Nielsen K (1976) Energy expenditure for thermoregulation and locomotion in emperor penguins. Am J Physiol 231:903–912PubMedGoogle Scholar
  86. Poulin R, Closs GP, Lill AWT et al (2012) Migration as an escape from parasitism in New Zealand galaxiid fishes. Oecologia 169:955–963. doi:10.1007/s00442-012-2251-x PubMedCrossRefGoogle Scholar
  87. Pulido F, Berthold P (2010) Current selection for lower migratory activity will drive the evolution of residency in a migratory bird population. Proc Natl Acad Sci USA 107:7341–7346. doi:10.1073/pnas.0910361107 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Quiñones J, González Carman V, Zeballos J et al (2010) Effects of El Niño-driven environmental variability on black turtle migration to Peruvian foraging grounds. Hydrobiologia 645:69–79. doi:10.1007/s10750-010-0225-8 CrossRefGoogle Scholar
  89. Robinson A, Crick HQ, Learmonth JA et al (2009) Travelling through a warming world: climate change and migratory species. Endanger Species Res 7:87–99. doi:10.3354/esr00095 CrossRefGoogle Scholar
  90. Rodhouse PG, Barton J, Hatfield EMC, Symon C (1995) Illex argentinus: life cycle, population structure, and fishery. ICES Mar Sci Symp 199:425–432Google Scholar
  91. Rose GA, Leggett WC (1988) Atmosphere-ocean coupling and Atlantic cod migrations: effects of wind-forced variations in sea temperatures and currents in nearshore distributions and catch rates of Gadus morhua. Can J Fish Aquat Sci 45:1234–1243CrossRefGoogle Scholar
  92. Rosenzweig C, Karoly D, Vicarelli M et al (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357. doi:10.1038/nature06937 PubMedCrossRefGoogle Scholar
  93. Russell AP, Bauer AM, Johnson MK, Elewa MAT (2005) Migration in amphibians and reptiles: an overview of patterns and orientation mechanisms in relation to life history strategies. Migration of organisms. Springer, Berlin, pp 151–203CrossRefGoogle Scholar
  94. Satterfield DA, Maerz JC, Altizer S (2015) Loss of migratory behaviour increases infection risk for a butterfly host. Proc R Soc B Biol Sci. doi:10.1098/rspb.2014.1734 Google Scholar
  95. Schneider DW, Lyons J (1993) Dynamics of upstream migration in two species of tropical freshwater snails. J N Am Benthol Soc 12:3. doi:10.2307/1467680 CrossRefGoogle Scholar
  96. Shackell NL, Carscadden JE, Miller DS (1994) Migration of pre-spawning capelin (Mallotus villosus) as related to temperature on the northern Grand Bank, Newfoundland. ICES J Mar Sci 51:107–114CrossRefGoogle Scholar
  97. Shaw AK (2012) Modeling motives for movement: theory for why animals migrate. Princeton University, PrincetonGoogle Scholar
  98. Shaw AK, Kelly KA (2013) Linking El Niño, local rainfall, and migration timing in a tropical migratory species. Glob Change Biol 19:3283–3290. doi:10.1111/gcb.12311 CrossRefGoogle Scholar
  99. Shaw AK, Levin SA (2011) To breed or not to breed: a model of partial migration. Oikos 120:1871–1879. doi:10.1111/j.1600-0706.2011.19443.x CrossRefGoogle Scholar
  100. Shaw AK, Levin SA (2013) The evolution of intermittent breeding. J Math Biol 66:685–703. doi:10.1007/s00285-012-0603-0 PubMedCrossRefGoogle Scholar
  101. Sillett TS, Holmes RT, Sherry TW (2000) Impacts of a global climate cycle on population dynamics of a migratory songbird. Science 288:2040–2042PubMedCrossRefGoogle Scholar
  102. Sims DW, Genner MJ, Southward AJ, Hawkins SJ (2001) Timing of squid migration reflects North Atlantic climate variability. Proc R Soc Lond B Biol Sci 268:2607–2611CrossRefGoogle Scholar
  103. Sims DW, Southall EJ, Richardson AJ et al (2003) Seasonal movements and behaviour of basking sharks from archival tagging: no evidence of winter hibernation. Mar Ecol Prog Ser 248:187–196CrossRefGoogle Scholar
  104. Sims DW, Wearmouth VJ, Genner MJ et al (2004) Low-temperature-driven early spawning migration of a temperate marine fish. J Anim Ecol 73:333–341CrossRefGoogle Scholar
  105. Sinsch U (1988) Seasonal changes in the migratory behaviour of the toad Bufo bufo: direction and magnitude of movements. Oecologia 76:390–398CrossRefGoogle Scholar
  106. Smith BD, McFarlane GA, Saunders MW (1990) Variation in Pacific hake (Merluccius productus) summer length-at-age near Southern Vancouver and its relationship to fishing and oceanography. Can J Fish Aquat Sci 47:2195–2211CrossRefGoogle Scholar
  107. Southwood TRE (1962) Migration of terrestrial arthropods in relation to habitat. Biol Rev 37:171–211CrossRefGoogle Scholar
  108. Southwood A, Avens L (2010) Physiological, behavioral, and ecological aspects of migration in reptiles. J Comp Physiol B 180:1–23. doi:10.1007/s00360-009-0415-8 PubMedCrossRefGoogle Scholar
  109. Srygley RB, Dudley R, Oliviera EG et al (2010) El Niño and dry season rainfall influence hostplant phenology and an annual butterfly migration from Neotropical wet to dry forests. Glob Change Biol 16:936–945CrossRefGoogle Scholar
  110. Stefanescu C, Askew RR, Corbera J, Shaw MR (2012) Parasitism and migration in southern Palaearctic populations of the painted lady butterfly, Vanessa cardui (Lepidoptera: Nymphalidae). Eur J Entomol 109:85–94CrossRefGoogle Scholar
  111. Stephens PA, Boyd IL, McNamara JM, Houston AI (2009) Capital breeding and income breeding: their meaning, measurement, and worth. Ecology 90:2057–2067PubMedCrossRefGoogle Scholar
  112. Stokesbury MJ, Teo SLH, Seitz A et al (2004) Movement of Atlantic bluefin tuna (Thunnus thynnus) as determined by satellite tagging experiments initiated off New England. Can J Fish Aquat Sci 61:1976–1987. doi:10.1139/f04-130 CrossRefGoogle Scholar
  113. Studds CE, Marra PP (2011) Rainfall-induced changes in food availability modify the spring departure programme of a migratory bird. Proc R Soc Lond B Biol Sci 278:3437–3443. doi:10.1098/rspb.2011.0332 CrossRefGoogle Scholar
  114. Swan BL (2005) Migrations of adult horseshoe crabs, Limulus polyphemus, in the Middle Atlantic Bight: a 17-year tagging study. Estuaries 28:28–40CrossRefGoogle Scholar
  115. Talbot LM, Talbot MH (1963) The wildebeest in western Masailand, East Africa. Wildl Monogr 12:3–88Google Scholar
  116. Taylor CM, Norris DR (2007) Predicting conditions for migration: effects of density dependence and habitat quality. Biol Lett 3:280–283PubMedPubMedCentralCrossRefGoogle Scholar
  117. Thorpe JE (1994) Reproductive strategies in Atlantic salmon, Salmo salar L. Aquac Fish Manag 25:77–87Google Scholar
  118. Uvarov BP (1957) The aridity factor in the ecology of locusts and grasshoppers of the Old World. Arid Zone Res 8:164–198Google Scholar
  119. Van Buskirk J, Mulvihill RS, Leberman RC (2009) Variable shifts in spring and autumn migration phenology in North American songbirds associated with climate change. Glob Change Biol 15:760–771. doi:10.1111/j.1365-2486.2008.01751.x CrossRefGoogle Scholar
  120. Walsh M, Reid DG, Turrell WR (1995) Understanding mackerel migration off Scottland: tracking with echosounders and commercial data, and including environmental correlates and behavior. ICES J Mar Sci 52:925–939CrossRefGoogle Scholar
  121. Walton LR, Cluff HD, Paquet PC, Ramsay MA (2001) Movement patterns of barren-ground wolves in the central Canadian Arctic. J Mammal 82:867–876CrossRefGoogle Scholar
  122. Werner DI (1983) Reproduction in the iguana Conolophus subcristatus on Fernandina Island, Galapagos: clutch size and migration costs. Am Nat 121:757–775CrossRefGoogle Scholar
  123. Westbrook JK, Nagoshi RN, Meagher RL et al (2016) Modeling seasonal migration of fall armyworm moths. Int J Biometeorol 60:255–267. doi:10.1007/s00484-015-1022-x PubMedCrossRefGoogle Scholar
  124. Wilcove DS, Wikelski M (2008) Going, going, gone: is animal migration disappearing? PLoS Biol 6:1361–1364. doi:10.1371/journal.pbio.0060188 CrossRefGoogle Scholar
  125. Williams CB (1957) Insect migration. Annu Rev Entomol 2:163–180CrossRefGoogle Scholar
  126. Wilson SG, Taylor JG, Pearce AF (2001) The seasonal aggregation of whale sharks at Ningaloo Reef, Western Australia: currents, migrations and the El Niño/Southern Oscillation. Environ Biol Fishes 61:1–11CrossRefGoogle Scholar
  127. Wilson SG, Polovina JJ, Stewart BS, Meekan MG (2006) Movements of whale sharks (Rhincodon typus) tagged at Ningaloo Reef, Western Australia. Mar Biol 148:1157–1166CrossRefGoogle Scholar
  128. Wolcott TG, Wolcott DL (1985) Factors influencing the limits of migratory movements in terrestrial crustaceans. Contrib Mar Sci 68:257–273Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUSA
  2. 2.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulUSA

Personalised recommendations