Evolutionary Ecology

, Volume 31, Issue 2, pp 193–204 | Cite as

The impact of floral spot and ring markings on pollinator foraging dynamics

  • Marinus L. de Jager
  • Edward Willis-Jones
  • Samuel Critchley
  • Beverley J. Glover


Linear areas of contrasting floral colour, or “nectar guides”, are recognized to enhance pollinator attraction. Few studies, however, have investigated the role of other types of floral marking in pollinator behaviour. In this study, we explore the impact of petal spots and petal rings on bumblebee foraging dynamics. Using model flowers with discrete spot or bullseye ring patterns we investigate the responses of Bombus terrestris foragers towards rewarding and unrewarding flowers. We find that the presence of petal spots and rings reduce the search time of pollinators to locate rewarding model flowers. Only the rewarding petal ring phenotype, however, is readily learned and significantly increases the foraging efficiency of experienced bees over four foraging bouts. Although the rewarding spot phenotype induces random foraging over this time frame, employing differential conditioning with a strong aversive stimulus over ten foraging bouts reveal that bees have the capacity to correctly identify rewarding spot phenotypes with more training. Once a strong association between petal marking and reward is formed, bees continue to respond to marked phenotypes even when unrewarding, suggesting rewardless plants that exhibit petal marking could potentially exploit their pollinators. We conclude that petal marking, whether organised discretely in a spot or in a continuous ring around the centre of a flower, have a significant and complex influence on pollinator foraging dynamics.


Bombus Deception Insect behaviour Learning Nectar guide Plant–pollinator interaction 



We thank Matthew Dorling for excellent plant care and for maintaining bee colonies, and Rachel Walker, Corneile Minnaar and Willem Augustyn for helpful discussions. This project was supported by a Royal Society Joint International Project Grant to BJG.

Supplementary material

10682_2016_9852_MOESM1_ESM.tif (1.9 mb)
Figure S1 Search time in seconds on plain, ring and spot model flowers. Estimated means and 95% CI are shown. (TIFF 1962 kb)


  1. Bradshaw HD, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkey flowers. Nature 426:176–178CrossRefPubMedGoogle Scholar
  2. Campbell DR, Bischoff MB, Lord JM, Robertson AW (2010) Flower color influences insect visitation in alpine New Zealand. Ecology 91:2638–2649CrossRefPubMedGoogle Scholar
  3. Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388CrossRefPubMedGoogle Scholar
  4. Dafni A, Bernhardt P, Shmida A et al (1990) Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Isr J Bot 39:81–92Google Scholar
  5. Darwin C (1888) The different forms of flowers on plants of the same species, 3rd edn. John Murray, LondonGoogle Scholar
  6. de Jager ML, Ellis AG (2012) Gender-specific pollinator preference for floral traits. Funct Ecol 26:1197–1204. doi: 10.1111/j.1365-2435.2012.02028.x CrossRefGoogle Scholar
  7. de Jager ML, Ellis AG (2013) The influence of pollinator phylogeography and mate preference on floral divergence in a sexually deceptive daisy. Evolution 67:1706–1714. doi: 10.1111/evo.12070 CrossRefPubMedGoogle Scholar
  8. de Jager ML, Ellis AG (2014a) Costs of deception and learned resistance in deceptive interactions. Proc R Soc B 281(2013):2861Google Scholar
  9. de Jager ML, Ellis AG (2014b) Floral polymorphism and the fitness implications of attracting pollinating and florivorous insects. Ann Bot 113:213–222. doi: 10.1093/aob/mct189 CrossRefPubMedGoogle Scholar
  10. Dinkel T, Lunau K (2001) How drone flies (Eristalis tenax L., Syrphidae, Diptera) use floral guides to locate food sources. J Insect Physiol 47:1111–1118. doi: 10.1016/S0022-1910(01)00080-4 CrossRefPubMedGoogle Scholar
  11. Dyer AG, Chittka L (2004) Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften 91:224–227. doi: 10.1007/s00114-004-0508-x CrossRefPubMedGoogle Scholar
  12. Eckhart VM, Rushing NS, Hart GM, Hansen JD (2006) Frequency dependent pollinator foraging in polymorphic Clarkia xantiana ssp. xantiana populations: implications for flower colour evolution and pollinator interactions. Oikos 112:412–421CrossRefGoogle Scholar
  13. Eisikowitch D (1980) The role of dark flowers in the pollination of certain Umbelliferae. J Nat Hist 14:737–742. doi: 10.1080/00222938000770611 CrossRefGoogle Scholar
  14. Ellis AG, Johnson SD (2009) The evolution of floral variation without pollinator shifts in Gorteria diffusa (Asteraceae). Am J Bot 96:793–801. doi: 10.3732/ajb.0800222 CrossRefPubMedGoogle Scholar
  15. Ellis AG, Johnson SD (2010) Floral mimicry enhances pollen export: the evolution of pollination by sexual deceit outside of the Orchidaceae. Am Nat 176:E143–E151. doi: 10.1086/656487 CrossRefPubMedGoogle Scholar
  16. Goodale E, Kim E, Nabors A et al (2014) The innate responses of bumble bees to flower patterns: separating the nectar guide from the nectary changes bee movements and search time. Naturwissenschaften 101:523–526. doi: 10.1007/s00114-014-1188-9 CrossRefPubMedGoogle Scholar
  17. Hansen DM, Van der Niet T, Johnson SD (2012) Floral signposts: testing the significance of visual “nectar guides” for pollinator behaviour and plant fitness. Proc Biol Sci 279:634–639. doi: 10.1098/rspb.2011.1349 CrossRefPubMedGoogle Scholar
  18. Harder LD, Johnson SD (2009) Darwins’ beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytol 183:530–545CrossRefPubMedGoogle Scholar
  19. Johnson SD, Dafni A (1998) Response of bee-flies to the shape and pattern of model flowers: implications for floral evolution in a Mediterranean herb. Funct Ecol 12:289–297CrossRefGoogle Scholar
  20. Johnson SD, Midgley JJ (1997) Fly pollination of Gorteria diffusa (Asteraceae), and a possible mimetic function for dark spots on the capitulum. Am J Bot 84:429–436CrossRefPubMedGoogle Scholar
  21. Jones KN (1996) Behavior and postpollination reproductive in alternative success floral phenotypes of Clarkia gracilis. Int J Plant Sci 157:733–738CrossRefGoogle Scholar
  22. Lamborn E, Ollerton J (2000) Experimental assessment of the functional morphology of inflorescences of Daucus carota (Apiaceae): testing the “fly catcher effect”. Funct Ecol 14:445–454CrossRefGoogle Scholar
  23. Leonard AS, Papaj DR (2011) “X” marks the spot: the possible benefits of nectar guides to bees and plants. Funct Ecol 25:1293–1301. doi: 10.1111/j.1365-2435.2011.01885.x CrossRefGoogle Scholar
  24. Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A 178:477–489CrossRefGoogle Scholar
  25. Lunau K, Fieselmann G, Heuschen B, Van De Loo A (2006) Visual targeting of components of floral colour patterns in flower-naive bumblebees (Bombus terrestris; Apidae). Naturwissenschaften 93:325–328. doi: 10.1007/s00114-006-0105-2 CrossRefPubMedGoogle Scholar
  26. MacArthur RH, Pianka ER (1966) On optimal use of a patchy environment. Am Nat 100:603. doi: 10.1086/282454 CrossRefGoogle Scholar
  27. Midgley JJ (1993) An evaluation of Hutchinson’s beetle-daisy hypothesis. Bothalia 23:70–72Google Scholar
  28. Picker MD, Midgley JJ (1996) Pollination by monkey beetles (Coleoptera: Scarabaeidae: Hopliini): flower and colour preferences. Afr Entomol 4:7–14Google Scholar
  29. Pohl M, Watolla T, Lunau K (2008) Anther-mimicking floral guides exploit a conflict between innate preference and learning in bumblebees (Bombus terrestris). Behav Ecol Sociobiol 63:295–302. doi: 10.1007/s00265-008-0661-x CrossRefGoogle Scholar
  30. Policha T, Davis A, Barnadas M et al (2016) Disentangling visual and olfactory signals in mushroom-mimicking Dracula orchids using 3D printed flowers. New Phytol. doi: 10.1093/biostatistics/manuscript-acf-v5 PubMedGoogle Scholar
  31. Simonds V, Plowright CMS (2004) How do bumblebees first find flowers? Unlearned approach responses and habituation. Anim Behav 67:379–386. doi: 10.1016/j.anbehav.2003.03.020 CrossRefGoogle Scholar
  32. Sletvold N, Trunschke J, Smit M et al (2016) Strong pollinator-mediated selection for increased flower brightness and contrast in a deceptive orchid. Evolution 70:716–724. doi: 10.1111/evo.12881 CrossRefPubMedGoogle Scholar
  33. Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci 98:3898–3903. doi: 10.1073/pnas.071053098 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Sprengel CK (1793) Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. Friedrich Vieweg, BerlinCrossRefGoogle Scholar
  35. Thomas MM, Rudall PJ, Ellis AG et al (2009) Development of a complex floral trait: the pollinator-attracting petal spots of the beetle daisy, Gorteria diffusa (Asteraceae). Am J Bot 96:2184–2196. doi: 10.3732/ajb.0900079 CrossRefPubMedGoogle Scholar
  36. Van Kleunen M, Nänni I, Donaldson JS, Manning JC (2007) The role of beetle marks and flower colour on visitation by monkey beetles (Hopliini) in the Greater cape floral region, South Africa. Ann Bot 100:1483–1489. doi: 10.1093/aob/mcm256 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Waser NM, Price MV (1985) The effect of nectar guides on pollinator preference: experimental studies with a montane herb. Oecologia 67:121–126CrossRefGoogle Scholar
  38. Whitney HM, Dyer A, Chittka L et al (2008) The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Naturwissenschaften 95:845–850. doi: 10.1007/s00114-008-0393-9 CrossRefPubMedGoogle Scholar
  39. Wickler W (1968) Mimicry. Weidenfeld and Nicholson, LondonGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Marinus L. de Jager
    • 1
  • Edward Willis-Jones
    • 2
  • Samuel Critchley
    • 2
  • Beverley J. Glover
    • 2
  1. 1.Department of Botany and ZoologyStellenbosch UniversityMatieland, StellenboschSouth Africa
  2. 2.Department of Plant SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations