Evolutionary Ecology

, Volume 30, Issue 5, pp 953–972 | Cite as

Higher reproductive success for chimeras than solitary individuals in the kelp Lessonia spicata but no benefit for individual genotypes

Original Paper


Chimerism is a peculiar, yet widespread, type of group living in which genetically heterogeneous entities are created through fusion between conspecifics. Here we tested whether chimerism provides direct benefits to the kelp Lessonia spicata, by analyzing its consequences on reproductive investment and success, at both the genotype and thallus levels. In addition, we quantified the frequency of chimerism in two natural populations, tested if group members were close kin, and evaluated the effects of relatedness and the number of genotypes per thallus on reproduction. Chimeric thalli were frequent (>60 %) in natural populations of L. spicata. In most cases, average intragroup relatedness was not significantly different from the background population. Reproductive investment was not significantly affected by the type of thallus (chimeric versus non-chimeric), by the number of genotypes per thallus or the average relatedness within thallus. Chimerism did not result in net benefits or costs in terms of genotypic reproductive success or probability of reproducing at the genotypic level. Yet, at the thallus level, chimerism increased reproductive success and the probability of reproducing, since more than one genotype reproduced in chimeric thallus. At the population level, chimerism affects L. spicata reproductive success by allowing the coexistence of a higher density of potential reproducers and mates compared to a scenario with only non-chimeric thallus. Chimerism may then have an important effect on the effective population size and possibly in reducing selfing rates.


Chimerism Group living Reproductive success Reproductive investment Brown seaweed 



Flattened, leaf-like structures of algae, where most of the photosynthetic activity takes place, and where reproductive structure differentiate from vegetative, photosynthetic tissue


The massive structure that sticks the alga onto the substratum, from which stipes emerge


A stem-like structure emerging from the holdfast and producing blades

Sorus (pl. sori)

A cluster of sporangia, where meiosis occur, which develops mostly on blades

Thallus (pl. thalli)

The whole organism, including the holdfast, stipes and blades. It can be chimeric (composed by more than one genotype) or non-chimeric (composed by a single genotype)


A genetically heterogeneous entity formed after the fusion of different genotypes

Reproductive investment

The amount of algal reproductive tissue

Genotypic reproductive success

The number of offspring genetically assigned to a parental genotype

Standardized genotypic reproductive success

The number of offspring assigned to a parental genotype divided by the number of stipes bearing that genotype within the thallus

Group reproductive success

The sum of the genotypic reproductive success of each genotype within a chimeric thallus


  1. Aanen DK, Debets AJM, de Visser JAGM et al (2008) The social evolution of somatic fusion. BioEssays 30:11–12CrossRefGoogle Scholar
  2. Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Syst 5:325–383CrossRefGoogle Scholar
  3. Allee WC (1931) Animal aggregations. University of Chicago Press, ChicagoGoogle Scholar
  4. Amar KO, Chadwick NE, Rinkevich B (2008) Coral kin aggregations exhibit mixed allogeneic reactions and enhanced fitness during early ontogeny. BMC Evol Biol 8:126–135CrossRefPubMedPubMedCentralGoogle Scholar
  5. Amos W, Hoffmann JI, Frodsham A et al (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7:10–14CrossRefGoogle Scholar
  6. Barner AK, Pfister CA, Wootton JT (2011) The mixed mating system of the sea palm kelp Postelsia palmaeformis: few costs to selfing. Proc R Soc B 278:1347–1355CrossRefPubMedGoogle Scholar
  7. Bates D, Maechler M, Bolker B et al (2014) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7, URL: http://CRAN.R-project.org/package=lme4
  8. Ben-Shlomo R, Douek J, Rinkevich B (2001) Heterozygote deficiency and chimerism in remote populations of a colonial ascidian from New Zealand. Mar Ecol Progr Ser 209:109–117CrossRefGoogle Scholar
  9. Ben-Shlomo R, Motro U, Paz G et al (2008) Pattern of settlement and natural chimerism in the colonial urochordate Botryllus schlosseri. Genetica 132:51–58CrossRefPubMedGoogle Scholar
  10. Bishop JDD, Sommerfeldt AD (1999) Not like Botryllus: indiscriminate postmetamorphic fusion in a compound ascidian. Proc R Soc Lond B 266:241–248CrossRefGoogle Scholar
  11. Brusini J, Robin C, Franc A (2013) To fuse or not to fuse? An evolutionary view of self-recognition systems. J Phylogen Evol Biol 1:103CrossRefGoogle Scholar
  12. Buss LW (1981) Group living, competition and the evolution of cooperation in a sessile invertebrate. Science 213:1012–1014CrossRefPubMedGoogle Scholar
  13. Buss LW (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proc Natl Acad Sci USA 79:5337–5341CrossRefPubMedPubMedCentralGoogle Scholar
  14. Damuth J, Heisler IL (1988) Alternative formulations of multilevel selection. Biol Philos 3:407–430CrossRefGoogle Scholar
  15. Fajardo A, McIntire EJB (2010) Merged trees in second-growth, fire origin forests in Patagonia, Chile: positive spatial association patterns and their ecological implications. Am J Bot 97:1424–1430CrossRefPubMedGoogle Scholar
  16. Faugeron S, Martínez EA, Correa JA et al (2005) Long-term copper mine waste disposal in Northern Chile associated with gene flow disruption of the intertidal kelp Lessonia nigrescens. Mar Ecol Progr Ser 288:129–140CrossRefGoogle Scholar
  17. Faugeron S, Veliz D, Peralta G et al (2009) Development and characterization of nine polymorphic microsatellite markers in the Chilean kelp Lessonia nigrescens. Mol Ecol Resour 9:937–939CrossRefPubMedGoogle Scholar
  18. Folse H, Roughgarden J (2010) What is an individual organism? Q Rev Biol 84:447–472CrossRefGoogle Scholar
  19. Forsyth DR (2006) Group dynamics, 4th edn. Thomson Learning, Inc., BelmontGoogle Scholar
  20. Foster KR, Fortunato A, Strassman JE et al (2002) The costs and benefits of being a chimera. Proc R Soc Lond B 269:2357–2362CrossRefGoogle Scholar
  21. González AV, Santelices B (2008) Coalescence and chimerism in Codium (Chlorophyta) from central Chile. Phycologia 47:468–476CrossRefGoogle Scholar
  22. González A, Beltran J, Hiriart-Bertrand L et al (2012) Identification of cryptic species in the Lessonia nigrescens complex (Pheophyceae, Laminariales). J Phycol 48:1153–1165CrossRefPubMedGoogle Scholar
  23. González A, Borras-Chaves R, Beltrán J et al (2013) Morphological, ultrastructural, and genetic characterization of coalescence in the intertidal and shallow subtidal kelps Lessonia spicata and L. berteroana (Laminariales, Heterokontophyta). J Appl Phycol 26:1107–1113Google Scholar
  24. Grafen A (1982) How not to measure inclusive fitness. Nature 298:425–426CrossRefPubMedGoogle Scholar
  25. Grosberg RK, Quinn JF (1986) The genetic control and consequences of kin recognition by the larvae of a colonial marine invertebrate. Nature 322:456–459CrossRefGoogle Scholar
  26. Grosberg RK, Levitan DR, Cameron BB (1996) Evolutionary genetics of allorecognition in the colonial hydroid Hydractinia simbiolongicarpus. Evolution 50:2221–2240CrossRefGoogle Scholar
  27. Hamilton WD (1964) The genetical evolution of altruistic behaviour I & II. J Theor Biol 7:1–52CrossRefPubMedGoogle Scholar
  28. Hart MW, Grosberg RK (1999) Kin interactions in a colonial hydrozoan (Hydractinia symbilongicarpus): population structure on a mobile landscape. Evolution 53:793–805CrossRefGoogle Scholar
  29. Høeg JT, Lutzen J (1995) Life cycle and reproduction in the Cirripedia Rhizocephala. Oceanog Mar Biol Annu Rev 33:427–485Google Scholar
  30. Johansson ML, Raimondi PT, Reed DC et al (2013) Looking into the black box: simulating the role of self-fertilization and mortality in the genetic structure of Macrocystis pyrifera. Mol Ecol 22:4842–4854CrossRefPubMedGoogle Scholar
  31. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106CrossRefPubMedGoogle Scholar
  32. Klekowski EJ (1969) Reproductive biology of the Pteridophyta. II. Theoretical considerations. Bot J Linn Soc 62:347–359CrossRefGoogle Scholar
  33. Krueger-Hadfield SA, Roze D, Correa JA et al (2015) O father where art though? Paternity analyses in a natural population of the haploid-diploid seaweed Chondrus crispus. Heredity 114:185–194CrossRefPubMedGoogle Scholar
  34. Lukas JR, Creel SR, Waser PM (1996) How to measure inclusive fitness, revisited. Anim Behav 51:225–228CrossRefGoogle Scholar
  35. Maldonado M (1998) Do chimeric sponges have improved chances of survival? Mar Ecol Progr Ser 164:301–306CrossRefGoogle Scholar
  36. Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655CrossRefPubMedGoogle Scholar
  37. Martínez EA, Santelices B (1998) Selective mortality on haploid and diploid microscopic stages of Lessonia nigrescens Bory (Phaeophyta, Laminariales). J Exp Mar Biol Ecol 229:219–239CrossRefGoogle Scholar
  38. McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, LondonCrossRefGoogle Scholar
  39. McIntire EJB, Fajardo A (2011) Facilitation within species: a possible origin of group-selected superorganisms. Am Nat 178:88–97CrossRefPubMedGoogle Scholar
  40. Mercier A, Zhao Sun Z, Hamel JF (2011) Internal brooding favours pre-metamorphic chimerism in a non-colonial cnidarian, the sea anemone Urticina felina. Proc R Soc Lond B 278:3517–3522CrossRefGoogle Scholar
  41. Okasha S (2006) Evolution and the levels of selection. Clarendon Press, OxfordCrossRefGoogle Scholar
  42. Pancer Z, Gershon H, Rinkevich B (1995) Coexistence and possible parasitism of somatic and germ cell lines in chimeras of the colonial urochordate Botryllus schlosseri. Biol Bull 189:106–112CrossRefGoogle Scholar
  43. Peakall R, Smouse PE (2012) GENALEX 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pietsch PW (2005) Dimorphism, parasitism and sex revisited: modes of reproduction among deep-sea ceratioid anglerfish (Teleostei: Lophiiformes). Ichtyol Res 52:207–236CrossRefGoogle Scholar
  45. Pineda-Krch M, Lehtilä K (2004) Costs and benefits of genetic heterogeneity within organisms. J Evol Biol 17:1167–1177CrossRefPubMedGoogle Scholar
  46. Plough LV, Moran A, Marko P (2014) Density drives polyandry and relatedness influences paternal success in the Pacific gooseneck barnacle, Pollicipes elegans. BMC Evol Biol 14:81–90CrossRefPubMedPubMedCentralGoogle Scholar
  47. Puill-Stephan E, Willis BL, van Herwerden L et al (2009) Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef. PLoS ONE 11:e7751CrossRefGoogle Scholar
  48. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefGoogle Scholar
  49. Quirici V, Faugeron S, Hayes LD et al (2011) Absence of kin structure in a population of the group-living rodent Octodon degus. Behav Ecol 22:248–254CrossRefGoogle Scholar
  50. Raymundo LJ, Maypa AP (2004) Getting bigger faster: mediation of size-specific mortality via fusion in juvenile coral transplant. Ecol Appl 14:281–295CrossRefGoogle Scholar
  51. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
  52. Reed DC, Anderson TW, Ebeling AW et al (1997) The role of reproductive synchrony in the colonization potential of kelp. Ecology 78:2443–2457CrossRefGoogle Scholar
  53. Rinkevich B (2001) Human natural chimerism: an acquired character or a vestige of evolution? Hum Immunol 62:651–657CrossRefPubMedGoogle Scholar
  54. Rinkevich B (2002) Germ cell parasitism as an ecological and evolutionary puzzle: hitchhicking with positively selected genotypes. Oikos 96:25–30CrossRefGoogle Scholar
  55. Rinkevich B (2005) Natural chimerism in colonial urochordates. J Exp Mar Biol Ecol 322:93–109CrossRefGoogle Scholar
  56. Rinkevich B (2011) Quo vadis chimerism? Chimerism 2:1–5CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rinkevich B, Loya Y (1985) Intraspecific competition in a reef coral: effects on growth and reproduction. Oecologia 66:100–105CrossRefGoogle Scholar
  58. Rinkevich B, Shapira M (1999) Multi-partner urochordate chimeras outperform two-partner chimerical entities. Oikos 87:315–320CrossRefGoogle Scholar
  59. Rinkevich B, Yankelevich I (2004) Environmental split between germ cell parasitism and somatic cell synergism in chimeras of a colonial urochordate. J Exp Biol 207:3531–3536CrossRefPubMedGoogle Scholar
  60. Ross CN, French JA, Ort G (2007) Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii). Proc Natl Acad Sci USA 104:6278–6282CrossRefPubMedPubMedCentralGoogle Scholar
  61. Santelices B (2004) A comparison of ecological responses among aclonal (unitary), clonal and coalescing macroalgae. J Exp Mar Biol Ecol 300:31–64CrossRefGoogle Scholar
  62. Santelices B, Aedo D (2006) Group recruitment and early survival of Mazzaella laminarioides. J Appl Phycol 18:583–589CrossRefGoogle Scholar
  63. Santelices B, Alvarado JL (2008) Demographic consequences of coalescence in sporeling populations of Mazzaella laminarioides (Gigartinales, Rsdophyta). J Phycol 44:624–636CrossRefPubMedGoogle Scholar
  64. Santelices B, Correa J, Aedo D et al (1999) Convergent biological processes in coalescing Rodophyta. J Phycol 35:1127–1149CrossRefGoogle Scholar
  65. Santelices B, Alvarado JL, Flores V (2010) Size increments due to interindividual fusions: how much and for how long? J Phycol 46:685–692CrossRefGoogle Scholar
  66. Schiel DR, Foster MS (2006) The population biology of large grown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. Annu Rev Ecol Evol Syst 37:343–372CrossRefGoogle Scholar
  67. Schwarz A, Hawes I, Nelson W et al (2006) Growth and reproductive phenology of the kelp Lessonia variegata in central New Zealand. New Zeal J Fresh 40:273–284CrossRefGoogle Scholar
  68. Segovia NI, Vásquez JA, Faugeron S et al (2015) On the advantage of sharing a holdfast: density dependent effects on the occurrence of fusion of individuals in the kelp Lessonia nigrescens. Mar Ecol 36:1107–1117CrossRefGoogle Scholar
  69. Sommerfeldt AD, Bishop JDD, Wood CA (2003) Chimerism following fusion in a clonal ascidian (Urochordata). Biol J Linn Soc 93:15254–15259Google Scholar
  70. Stoner DS, Weissman IL (1996) Somatic and germ cell parasitism in a colonial ascidian: possible role for a highly polymorphic allorecognition system. Proc Natl Acad Sci USA 93:15254–15259CrossRefPubMedPubMedCentralGoogle Scholar
  71. Stoner DS, Rinkevich B, Weissman IL (1999) Heritable germ and somatic cell lineage competitions in chimeric colonial protochordates. Proc Natl Acad Sci USA 96:9148–9153CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tapia FJ, Largier JL, Castillo M et al (2014) Latitudinal discontinuity in termal conditions along the nearshore of Central-Northern Chile. PLoS ONE 9:e110841CrossRefPubMedPubMedCentralGoogle Scholar
  73. Tellier F, Meynard AP, Correa JA et al (2009) Phylogeographic analyses of the 30oS south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? Mol Phylogenet Evol 53:679–693CrossRefPubMedGoogle Scholar
  74. Tellier F, Tapia J, Faugeron S et al (2011) The Lessonia nigrescens species complex (Laminariales, Phaeophyceae) shows strict parapatry and complete reproductive isolation in a secondary contact zone. J Phycol 47:894–903CrossRefPubMedGoogle Scholar
  75. Thomson JD, Herre EA, Hamrick JL (1991) Stone genetic mosaics in strangler fig trees: implications for tropical conservation. Science 254:1214–1216CrossRefPubMedGoogle Scholar
  76. Till-Bottraud I, Fajardo A, Rioux D (2012) Multi-stemmed trees of Nothofagus pumilio second-growth forest in Patagonia are formed by highly related individuals. Ann Bot 110:905–913CrossRefPubMedPubMedCentralGoogle Scholar
  77. Vasquez JA (2008) Production, use and fate of Chilean brown seaweeds: re-sources for a sustainable fishery. J App Phycol 20:457–467CrossRefGoogle Scholar
  78. Vásquez JA, Tala F and Vega JMA et al (2008) Bases ecológicas y evaluación de usos alternativos para el manejo de praderas de algas pardas de la III y IV regiones. Fondo de Investigación Pesquera, INFORME FINAL No 2005-22. 220 pp. Available from http://www.fip.cl/Archivos/Hitos/Informes/inffinal%202005-22.pdf. Accessed Mar 2010
  79. Velicer GJ, Vos M (2009) Sociobiology of the Myxobacteria. Annu Rev Microbiol 63:599–623CrossRefPubMedGoogle Scholar
  80. Wang J (2011) Unbiased relatedness estimation in structured populations. Genetics 187:887–901CrossRefPubMedPubMedCentralGoogle Scholar
  81. Wernberg T (2005) Holdfast aggregation in relation to morphology, age, attachment and drag for the kelp Ecklonia radiata. Aquat Bot 82:168–180CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Centro de Conservación Marina, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.UMI 3614 Evolutionary Biology and Ecology of AlgaeCNRS – Sorbonne Universités UPMC Univ. Paris 06 – Pontificia Universidad Católica de Chile – Universidad Austral de ChileSantiagoChile

Personalised recommendations