Evolutionary Ecology

, Volume 30, Issue 4, pp 663–684 | Cite as

Geographic structuring into vicariant species-pairs in a wide-ranging, high-dispersal plant–insect mutualism: the case of Ficus racemosa and its pollinating wasps

  • A. Bain
  • R. M. Borges
  • M. H. Chevallier
  • H. Vignes
  • N. Kobmoo
  • Y. Q. Peng
  • A. Cruaud
  • J. Y. Rasplus
  • F. Kjellberg
  • M. Hossaert-Mckey
Original Paper


Ficus and their mutualistic pollinating wasps provide a unique model to investigate joint diversification in a high dispersal system. We investigate genetic structuring in an extremely wide-ranging Ficus species, Ficus racemosa, and its pollinating wasp throughout their range, which extends from India to Australia. Our samples were structured into four large, vicariant populations of figs and wasps which may correspond to distinct (sub)species, located in India, China-Thailand, Borneo, and Australia. However, the genetically most divergent group was the Indian population for the figs and the China-Thailand population for the wasps, suggesting different evolutionary histories of populations. Molecular dating for the wasps shows that diversification of the pollinator clade is surprisingly old, beginning about 13.6 Ma. Data on both the host fig species and its pollinating wasps suggest that strong genetic flow within biogeographic groups over several hundreds of kilometers has limited genetic and morphological differentiation and, potentially, local adaptation. This is probably due to long-distance dispersal of pollinating wasps. The genetic clustering into large geographic units observed in F. racemosa and its pollinators is reminiscent of what can be observed in some other high-dispersal organisms characterized by morphology that varies little over huge distances. The implications of strong gene flow for diversification processes and adaptation to different ecological conditions in Ficus and their pollinating wasps are just beginning to emerge.


Agaonidae Genetic structuring Ficus Phylogeography 



This study was funded by the by the ANR Projects “nicefigs” (ANR-09-BLAN-0392-CSD 7; NSC 99-2923-B-002-001-MY3) and “biofigs” (ANR BDIV-006-001)/National Science Council, Taiwan, R. O. C. Led by M.H.M. We thank Marc Ancrenaz, James Cook, and Edmond Dounias for their help in collecting samples, and Doyle McKey for his useful comments on our paper. We are also grateful to the staff of the Center for Ecological Sciences, Bangalore and of Xishuangbanna Tropical Botanical Garden (XTBG, China) for their field assistance. Laboratory manipulations were done at CEFE (SMGE), CBGP and at the LABEX CEMEB facilities.

Supplementary material

10682_2016_9836_MOESM1_ESM.docx (19 kb)
Supplementary material 1 (DOCX 18 kb)
10682_2016_9836_MOESM2_ESM.docx (300 kb)
Supplementary material 2 (DOCX 299 kb)


  1. Ahmed S, Dawson DA, Compton SG et al (2007) Characterization of microsatellite loci in the African fig Ficus sycomorus L. (Moraceae). Mol Ecol Notes 7:1175–1177CrossRefGoogle Scholar
  2. Ahmed S, Compton SG, Butlin RK et al (2009) Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometers apart. Proc Natl Acad Sci USA 106:20342–20347CrossRefPubMedPubMedCentralGoogle Scholar
  3. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov PN, Csaki F (eds) Second international symposium on information theory. Akad, Kiado, pp 267–281Google Scholar
  4. Alvarez N, McKey D, Kjellberg F et al (2010) Phylogeography and historical biogeography of obligate specific mutualisms. In: Morand S, Krasnov BR (eds) The biogeography of host-parasite interactions. Oxford University Press, Oxford, p 277Google Scholar
  5. Ashley MV (2010) Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape. Crit Rev Plant Sci 29:148–161CrossRefGoogle Scholar
  6. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300Google Scholar
  7. Berg CC, Corner EJH (2005) Moraceae (Ficus). In: Nooteboom HP (ed) Flora Malesiana. National Herbarium Nederland, LeidenGoogle Scholar
  8. Borges RM (2015) How to be a fig wasp parasite on the fig–fig wasp mutualism. Curr Opin Insect Sci 8:34–40CrossRefGoogle Scholar
  9. Buschbom J, Yanbaev Y, Degen B (2011) Efficient long-distance gene flow into an isolated relict oak stand. J Hered 22:484–493Google Scholar
  10. Chen Y, Compton SG, Liu M et al (2012) Fig trees at the northern limit of their range: the distributions of cryptic pollinators indicate multiple glacial refugia. Mol Ecol 21:1687–1701CrossRefPubMedGoogle Scholar
  11. Conchou L, Cabioch L, Rodriguez LJV et al (2014) Daily rhythm of mutualistic pollinator activity and scent emission in Ficus septica: ecological differentiation between co-occurring pollinators and potential consequences for chemical communication and facilitation of host speciation. PLoS ONE 9:e103581CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cornille A, Underhill JG, Cruaud A et al (2012) Floral volatiles, pollinator sharing and diversification in the fig–wasp mutualism: insights from Ficus natalensis, and its two wasp pollinators (South Africa). Proc R Soc B 279:1731–1739CrossRefPubMedGoogle Scholar
  13. Cruaud A, Jabbour-Zahab R, Genson G et al (2010) Laying the foundations for a new classification of Agaonidae (Hymenoptera: Chalcidoidea), a multilocus phylogenetic approach. Cladistics 26:359–387Google Scholar
  14. Cruaud A, Jabbour-Zahab R, Genson G et al (2011) Phylogeny and evolution of life-history strategies in the Sycophaginae non-pollinating fig wasps (Hymenoptera, Chalcidoidea). BMC Evol Biol 11:178–192CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cruaud A, Rønsted N, Chantarasuwan B et al (2012) An extreme case of plant-insect co-diversification: figs and fig-pollinating wasps. Syst Biol 61:1029–1047CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cunha RL, Blanc F, Bonhomme F et al (2011) Evolutionary patterns in pearl oysters of the genus Pinctada (Bivalvia: Pteriidae). Mar Biotechnol 13:181–192CrossRefPubMedGoogle Scholar
  17. Darwell CT, Al-Beidh S, Cook JM (2014) Molecular species delimitation of a symbiotic fig-pollinating wasp species complex reveals extreme deviation from reciprocal partner specificity. BMC Evol Biol 14:189CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dev SA, Kjellberg F, Hossaert-McKey M et al (2011) Fine-scale population genetic structure of two dioecious Indian keystone species, Ficus hispida and Ficus exasperata (Moraceae). Biotropica 43:309–316CrossRefGoogle Scholar
  19. Dick CW, Lewis SL, Maslin M et al (2013) Neogene origins and implied warmth tolerance of Amazon tree species. Ecol Evol 3:162–169CrossRefPubMedCentralGoogle Scholar
  20. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214–221CrossRefPubMedPubMedCentralGoogle Scholar
  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  22. Gu X (1995) Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol Biol Evol 12:546–557PubMedGoogle Scholar
  23. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  24. Hardy OJ, Charbonnel N, Fréville H et al (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482PubMedPubMedCentralGoogle Scholar
  25. Harrison RD (2005) Figs and the diversity of tropical rainforests. Bioscience 55:1053–1064CrossRefGoogle Scholar
  26. Harrison RD, Rasplus J-Y (2006) Dispersal of fig pollinators in Asian tropical rain forests. J Trop Ecol 22:631–639CrossRefGoogle Scholar
  27. Heer K, Kalko EKV, Albrecht L, Garcia-Villacorta R, Staeps FC, Herre EA, Dick CW (2015) Spatial scales of genetic structure in free-standing and strangler figs (Ficus, Moraceae) inhabiting Neotropical forests. PLoS ONE 10:e0133581CrossRefPubMedPubMedCentralGoogle Scholar
  28. Heinrichs J, Hentschel J, Feldberg K et al (2009) Phylogenetic biogeography and taxonomy of disjunctly distributed bryophytes. J Syst Evol 47:497–508CrossRefGoogle Scholar
  29. Heinze B (2007) A database of PCR primers for the chloroplast genomes of higher plants. Plant Methods 3:4CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hopkins MJ (2011) How species longevity, intraspecific morphological variation, and geographic range size are related: a comparison using late Cambrian trilobites. Evolution 65:3253–3273CrossRefPubMedGoogle Scholar
  31. Hossaert-McKey M, Soler C, Schatz B et al (2010) Floral scents: their roles in nursery pollination mutualisms. Chemoecology 20:75–88CrossRefGoogle Scholar
  32. Jablonski D, Roy K (2003) Geographical range and speciation in fossil and living mollusks. Proc R Soc B 270:401–406CrossRefPubMedPubMedCentralGoogle Scholar
  33. Jevanandam N, Goh AGR, Corlett RT (2013) Climate warming and the potential 16 extinction of fig wasps, the obligate pollinators of figs. Biol Lett 9:20130041CrossRefPubMedPubMedCentralGoogle Scholar
  34. Katoh K, Kuma K, Toh H et al (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518CrossRefPubMedPubMedCentralGoogle Scholar
  35. Khadari B, Hochu I, Santoni S et al (2001) Identification and characterization of microsatellite loci in the common fig (Ficus carica L.) and representative species of the genus Ficus. Mol Ecol Notes 1:191–193CrossRefGoogle Scholar
  36. Kinland BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology 84:2007–2020CrossRefGoogle Scholar
  37. Kjellberg F, Proffit M (2016) Tracking the elusive history of diversification in plant-herbivorous insect-parasitoid food webs: insights from figs and fig-wasps. Mol Ecol 25:843–845CrossRefPubMedGoogle Scholar
  38. Kjellberg F, Jousselin E, Hossaert-McKey M et al (2005) Biology, ecology, and evolution of fig-pollinating wasps (Chalcidoidea, Agaonidae). In: Raman A, Schaefer W, Withers TM (eds) Biology, ecology and evolution of gall-inducing arthropods. Science Publishers Inc, Enfield (NH) USA, Plymouth, pp 539–572Google Scholar
  39. Kobmoo N, Hossaert-McKey M, Rasplus J-Y et al (2010) Ficus racemosa is pollinated by a single population of a single agaonid wasp species in continental South-East Asia. Mol Ecol 19:2700–2712CrossRefPubMedGoogle Scholar
  40. Kremer A, Ronce O, Robledo-Arnuncio JJ et al (2012) Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol Lett 15:378–392CrossRefPubMedPubMedCentralGoogle Scholar
  41. Krishnan A, Ghara M, Kasinathan S et al (2015) Plant reproductive traits mediate tritrophic feedback effects within an obligate brood-site pollination mutualism. Oecologia 179:797–809CrossRefPubMedGoogle Scholar
  42. Léotard G, Debout G, Dalecky A et al (2009) Range expansion drives dispersal evolution in an equatorial three-species symbiosis. PLoS ONE 4:e5377CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lewis LR, Rozzi R, Goffinet B (2014) Direct long-distance dispersal shapes a New World amphitropical disjunction in the dispersal-limited dung moss Tetraplodon (Bryopsida: Splachnaceae). J Biogeogr 41:2385–2395CrossRefGoogle Scholar
  44. Lin S-Y, Chou L-S, Di Giusto B et al (2015) Sexual specialization in phenology in dioecious Ficus benguetensis and its consequences for the mutualism. Bot stud 56:32CrossRefGoogle Scholar
  45. Liu M, Zhao R, Chen Y et al (2014) Competitive exclusion among fig wasps achieved via entrainment of host plant flowering phenology. PLoS ONE 9:e97783CrossRefPubMedPubMedCentralGoogle Scholar
  46. Liu M, Compton SG, Peng F-E et al (2015) Movements of genes between populations: are pollinators more effective at transferring their own or plant genetic markers? Proc R Soc B 282:20150290CrossRefPubMedPubMedCentralGoogle Scholar
  47. Loiselle BA, Sork VL, Nason J et al (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425CrossRefGoogle Scholar
  48. Moe AM, Weiblen GD (2010) Molecular divergence in allopatric Ceratosolen (Agaonidae) pollinators of geographically widespread Ficus (Moraceae) species. Ann Entomol Soc Am 103:1025–1037CrossRefGoogle Scholar
  49. Moe AM, Weiblen GD (2011) Development and characterization of microsatellite loci in dioecious figs (Ficus, Moraceae). Am J Bot Notes Prot 98:e25–e27CrossRefGoogle Scholar
  50. Nunes FLD, Norris RD, Knowlton N (2011) Long distance dispersal and connectivity in amphi-atlantic corals at regional and basin scales. PLoS ONE 6:e22298CrossRefPubMedPubMedCentralGoogle Scholar
  51. Nylander JAA (2004) In: Nylander JAA (ed) Evolutionary Biology Centre. Uppsala University, UppsalaGoogle Scholar
  52. Oleksy R, Racey PA, Jones G (2015) High-resolution GPS tracking reveals habitat selection and the potential for long-distance seed dispersal by Madagascan flying foxes Pteropus rufus. Glob Ecol Conserv 3:678–692CrossRefGoogle Scholar
  53. Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Ann Rev Ecol Syst 25:547–572CrossRefGoogle Scholar
  54. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  55. Perrier X, Jacquemoud-Collet JP (2006) DARwin software.
  56. Pokorny L, Oliván G, Shaw AJ (2011) Phylogeographic patterns in two Southern Hemisphere species of Calyptrochaeta (Daltoniaceae, Bryophyta). Syst Bot 36:542–553CrossRefGoogle Scholar
  57. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  58. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  59. Renoult JP, Kjellberg F, Grout C et al (2009) Cyto-nuclear discordance in the phylogeny of Ficus section Galoglychia and host shifts in plant-pollinator associations. BMC Evol Biol 9:248CrossRefPubMedPubMedCentralGoogle Scholar
  60. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  61. Shilton LA, Altringham JD, Compton SG et al (1999) Old World fruit bats can be long-distance seed dispersers through extended retention of viable seeds in the gut. Proc R Soc B 266:219–223CrossRefPubMedCentralGoogle Scholar
  62. Smith CI, Tank S, Godsoe W et al (2011) Comparative phylogeography of a coevolved community: concerted population expansions in Joshua trees and four yucca moths. PLoS ONE 6:e25628CrossRefPubMedPubMedCentralGoogle Scholar
  63. Soler C, Hossaert-McKey M, Buatois B et al (2011) Geographic variation of floral scent in a highly specialized pollination mutualism. Phytochemistry 72:74–81CrossRefPubMedGoogle Scholar
  64. Sutton TL, Riegler M, Cook JM (2016) One step ahead: a parasitoid disperses farther and forms a wider geographic population than its fig wasp host. Mol Ecol 25:882–894CrossRefPubMedGoogle Scholar
  65. Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefPubMedGoogle Scholar
  66. Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, ChicagoGoogle Scholar
  67. Thompson AR, Thacker CE, Shaw EY (2005) Phylogeography of marine mutualists: parallel patterns of genetic structure between obligate goby and shrimp partners. Mol Ecol 14:3557–3572CrossRefPubMedGoogle Scholar
  68. Tian E, Nason JD, Machado CA et al (2015) Lack of genetic isolation by distance, similar genetic structuring but different demographic histories in a fig-pollinating wasp mutualism. Mol Ecol 24:5976–5991CrossRefPubMedGoogle Scholar
  69. Vignes H, Hossaert-McKey M, Beaune D et al (2006) Development and characterization of microsatellite markers for a monoecious Ficus species, Ficus insipida, and cross-species amplification among different sections of Ficus. Mol Ecol Notes 6:792–795CrossRefGoogle Scholar
  70. Voris HK (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr 27:1153–1167CrossRefGoogle Scholar
  71. Wang G, Cannon CH, Chen J (2016) Pollinator sharing and gene flow among closely related sympatric dioecious fig taxa. Proc R Soc B 283:20152963CrossRefPubMedGoogle Scholar
  72. Ware AB, Compton SG (1994) Dispersal of adult female fig wasps. 2. Movements between trees. Entomol Exp Appl 73:231–238CrossRefGoogle Scholar
  73. Yang L-Y, Machado CA, Dang X-D et al (2015) The incidence and pattern of copollinator diversification in dioecious and monoecious figs. Evolution 69:294–304CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yu H, Nason JD (2013) Nuclear and chloroplast DNA phylogeography of Ficus hirta: obligate pollination mutualism and constraints on range expansion in response to climate change. New Phytol 197:276–289CrossRefPubMedGoogle Scholar
  75. Zhang G, Song Q, Yang D (2006) Phenology of Ficus racemosa in Xishuangbanna, Southwest China. Biotropica 38:334–341CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • A. Bain
    • 1
    • 2
  • R. M. Borges
    • 3
  • M. H. Chevallier
    • 1
    • 4
  • H. Vignes
    • 1
    • 5
  • N. Kobmoo
    • 1
    • 6
  • Y. Q. Peng
    • 7
  • A. Cruaud
    • 8
  • J. Y. Rasplus
    • 8
  • F. Kjellberg
    • 1
  • M. Hossaert-Mckey
    • 1
  1. 1.CEFE UMR 5175, CNRSUniversité de Montpellier, Université Paul-Valéry Montpellier – EPHEMontpellier, Cedex 5France
  2. 2.Institute of Ecology and Evolutionary Biology, College of Life ScienceNational Taiwan UniversityTaipeiTaiwan
  3. 3.Indian Institute of ScienceCentre for Ecological SciencesBangaloreIndia
  4. 4.CIRAD, Station de Ligne-Paradi, Pôle de Protection des Plantes - 3PsSaint-PierreFrance
  5. 5.CIRAD UMR AGAPMontpellierFrance
  6. 6.National Center for Genetic Engineering and Biotechnology (BIOTEC)Khlong LuangThailand
  7. 7.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesKunmingChina
  8. 8.INRA - UMR 1062 CBGP (INRA/IRD/CIRAD/supagro)Montferrier Sur LezFrance

Personalised recommendations