Advertisement

Evolutionary Ecology

, Volume 29, Issue 2, pp 299–310 | Cite as

Empirically simulated spatial sorting points at fast epigenetic changes in dispersal behaviour

  • Katrien Hilde Petra Van PetegemEmail author
  • Julien Pétillon
  • David Renault
  • Nicky Wybouw
  • Thomas Van Leeuwen
  • Robby Stoks
  • Dries Bonte
Original Paper

Abstract

During range expansion, the most dispersive individuals make up the range front, and assortative mating between these dispersive phenotypes leads to increased dispersiveness (i.e. spatial sorting). The precise inheritance of dispersal, however, is to date largely unknown in many organisms, thereby hampering any progress in evaluating the adaptive potential of species during range expansion. Using the spider mite Tetranychus urticae, we therefore empirically simulated spatial sorting by means of artificial selection on a unique pre-dispersal behaviour, tightly related to emigration. To separate directionality of the response from potential drift, we mimicked a recurrent low number of founders in replicated selection regimes. Afterwards, we inferred the mode of inheritance of the pre-dispersal behaviour by performing reciprocal crosses between selected (i.e. dispersive) and non-selected (i.e. non-dispersive) mites and by screening for endosymbionts known to be associated with changes in dispersal behaviour. Despite the recurrent low number of founders, the aerial dispersal behaviour responded strongly to the imposed selection pressure. The behaviour furthermore showed a maternal inheritance, though independent of any known dispersal-related endosymbionts. Though cytoplasmic inheritance cannot fully be excluded, we attribute the observed strong and rapid, maternally influenced response in dispersal to transgenerational epigenetic effects. Consequently, we can expect fast evolutionary dynamics during range expansion in the species.

Keywords

Range expansion Founder effect Tetranychus urticae Artificial selection Maternal inheritance Endosymbionts 

Notes

Acknowledgments

This project was funded by the Fund for Scientific Research - Flanders (FWO) (project G.0610.11). We also thank the Fund for Scientific Research - Flanders (FWO) for funding JP (visiting postdoctoral fellowship: FWO-project G. G0057/09 N). DB and RS were supported by BelSpo IAP Project “Speedy”. We furthermore thank the INEE-CNRS (ENVIROMICS call, project ‘ALIENS’) for funding DR. Finally, we thank Pim Edelaar, Cristina García and John Endler for inviting us and we thank two anonymous reviewers and Pim Edelaar for their useful comments on earlier versions of this manuscript.

References

  1. Bitume EV, Bonte D, Magalhães S, San Martin G, Van Dongen S et al (2011) Heritability and artificial selection on ambulatory dispersal distance in Tetranychus urticae: effects of density and maternal effects. PLoS One 6(10):e26927. doi: 10.1371/journal.pone.002692
  2. Bitume EV, Bonte D, Ronce O et al (2013) Density and genetic relatedness increase dispersal distance in a subsocial organism. Ecol Lett 16(4):430–437CrossRefPubMedGoogle Scholar
  3. Bitume EV, Bonte D, Ronce O, Olivieri I, Nieberding CM (2014) Dispersal distance is influenced by parental and grand-parental density. Proc Biol Sci 281:20141061. doi: 10.1098/rspb.2014.1061
  4. Bonduriansky R, Crean AJ, Day T (2012) The implications of nongenetic inheritance for evolution in changing environments. Evol Appl 5(2):192–201CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bonte D, Van Belle S, Maelfait JP (2007) Maternal care and reproductive state-dependent mobility determine natal dispersal in a wolf spider. Anim Behav 74:63–69CrossRefGoogle Scholar
  6. Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11(2):106–115PubMedGoogle Scholar
  7. Carbonnelle S, Hance T, Migeon A et al (2007) Microsatellite markers reveal spatial genetic structure of Tetranychus urticae (Acari : Tetranychidae) populations along a latitudinal gradient in Europe. Exp Appl Acarol 41(4):225–241CrossRefPubMedGoogle Scholar
  8. Diss AL, Kunkel JG, Montgomery ME et al (1996) Effects of maternal nutrition and egg provisioning on parameters of larval hatch, survival and dispersal in the gypsy moth, Lymantria dispar L. Oecologia 106(4):470–477CrossRefGoogle Scholar
  9. Donohue K (1999) Seed dispersal as a maternally influenced character: mechanistic basis of maternal effects and selection on maternal characters in an annual plant. Am Nat 154(6):674–689CrossRefPubMedGoogle Scholar
  10. Fukatsu T, Nikoh N (2000) Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawii (Insecta, Homoptera). Appl Environ Microbiol 66(2):643–650CrossRefPubMedCentralPubMedGoogle Scholar
  11. Gaggiotti OE, Couvet D (2004) Genetic structure in Heterogeneous environments. In: Ferriere R, Dieckmann U, Couvet D (eds) Evolutionary conservation biology. Cambridge University Press, Cambridge, pp 229–243CrossRefGoogle Scholar
  12. Goodacre SL, Martin OY, Bonte D et al (2009) Microbial modification of host long-distance dispersal capacity. BMC Biol 7:32CrossRefPubMedCentralPubMedGoogle Scholar
  13. Gotoh T, Noda H, Ito S (2007) Cardinium symbionts cause cytoplasmic incompatibility in spider mites. Heredity 98(1):13–20CrossRefPubMedGoogle Scholar
  14. Hanski I (ed) (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  15. Hanski I, Gaggiotti OE (eds) (2004) Ecology, genetics and evolution of metapopulations. Elsevier Academic Press, San DiegoGoogle Scholar
  16. Hill JK, Griffiths HM, Thomas CD (2011) Climate change and evolutionary adaptations at species’ range margins. Annu Rev Entomol 56:143–159CrossRefPubMedGoogle Scholar
  17. Holt RD (1985) Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor Popul Biol 28(2):181–208CrossRefGoogle Scholar
  18. Hoy MA, Jeyaprakash A (2005) Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari : Phytoseiidae) and its prey, Tetranychus urticae (Acari : Tetranychidae). Biol Control 32(3):427–441CrossRefGoogle Scholar
  19. Jenuth JP, Peterson AC, Fu K et al (1996) Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 14(2):146–151CrossRefPubMedGoogle Scholar
  20. Jeyaprakash A, Hoy MA (2000) Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9(4):393–405CrossRefPubMedGoogle Scholar
  21. Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23(3):482–490CrossRefPubMedGoogle Scholar
  22. Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77(7):2027–2042CrossRefGoogle Scholar
  23. Krebs CJ, Keller BL, Tamarin RH (1969) Microtus population biology—demographic changes in fluctuating populations of M. ochrogaster and M. pennsylvanicus in Southern Indiana. Ecology 50(4):587–607CrossRefGoogle Scholar
  24. Lacey EP (1998) What is an adaptive environmentally induced parental effect? In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, New York, pp 54–66Google Scholar
  25. Ledon-Rettig CC, Richards CL, Martin LB (2013) Epigenetics for behavioral ecologists. Behav Ecol 24(2):311–324CrossRefGoogle Scholar
  26. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240Google Scholar
  27. Li JB, Margolies DC (1993) Quantitative genetics of aerial dispersal behavior and life-history traits in Tetranychus urticae. Heredity 70:544–552CrossRefGoogle Scholar
  28. Li JB, Margolies DC (1994) Responses to direct and indirect selection on aerial dispersal behavior in Tetranychus urticae. Heredity 72:10–22CrossRefGoogle Scholar
  29. Massot M, Clobert J, Lorenzon P et al (2002) Condition-dependent dispersal and ontogeny of the dispersal behaviour: an experimental approach. J Anim Ecol 71(2):253–261CrossRefGoogle Scholar
  30. Mayr E (1963) Animal species and evolution. Harvard University Press, CambridgeCrossRefGoogle Scholar
  31. Mestre L, Bonte D (2012) Food stress during juvenile and maternal development shapes natal and breeding dispersal in a spider. Behav Ecol 23(4):759–764CrossRefGoogle Scholar
  32. Meylan S, Belliure J, Clobert J et al (2002) Stress and body condition as prenatal and postnatal determinants of dispersal in the common lizard (Lacerta vivipara). Horm Behav 42(3):319–326CrossRefPubMedGoogle Scholar
  33. Moran EV, Alexander JM (2014) Evolutionary responses to global change: lessons from invasive species. Ecol Lett 17(5):637–649CrossRefPubMedGoogle Scholar
  34. Noda H, Koizumi Y, Zhang Q et al (2001) Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol 31(6–7):727–737CrossRefPubMedGoogle Scholar
  35. Perkins AT, Phillips BL, Baskett ML et al (2013) Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol Lett 16(8):1079–1087CrossRefPubMedGoogle Scholar
  36. Perrot-Minnot MJ, Werren JH (1999) Wolbachia infection and incompatibility dynamics in experimental selection lines. J Evol Biol 12(2):272–282CrossRefGoogle Scholar
  37. Phillips BL, Brown GP, Shine R (2010) Life-history evolution in range-shifting populations. Ecology 91(6):1617–1627CrossRefPubMedGoogle Scholar
  38. Pierce AA, Zalucki MP, Bangura M, Udawatta M, Kronforst MR, Altizer S, Haeger JF, de Roode JC (2014) Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies. Proc Biol Sci 281:20142230. doi: 10.1098/rspb.2014.2230
  39. Roach DA, Wulff RD (1987) Maternal effects in plants. Annu Rev Ecol Syst 18:209–235CrossRefGoogle Scholar
  40. Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc Natl Acad Sci USA 108(14):5708–5711CrossRefPubMedCentralPubMedGoogle Scholar
  41. Sinervo B, Calsbeek R, Comendant T et al (2006) Genetic and maternal determinants of effective dispersal: the effect of sire genotype and size at birth in side-blotched lizards. Am Nat 168(1):88–99CrossRefPubMedGoogle Scholar
  42. Smitley DR, Kennedy GG (1985) Photo-oriented aerial dispersal behavior of Tetranychus urticae (Acari, Tetranychidae) enhances escape from the leaf surface. Ann Entomol Soc Am 78(5):609–614CrossRefGoogle Scholar
  43. Tien NSH, Sabelis MW, Egas M (2011) Ambulatory dispersal in Tetranychus urticae: an artificial selection experiment on propensity to disperse yields no response. Exp Appl Acarol 53(4):349–360CrossRefPubMedCentralPubMedGoogle Scholar
  44. Tschirren B, Fitze PS, Richner H (2007) Maternal modulation of natal dispersal in a passerine bird: an adaptive strategy to cope with parasitism? Am Nat 169(1):87–93CrossRefPubMedGoogle Scholar
  45. Tuomainen U, Candolin U (2011) Behavioural responses to human-induced environmental change. Biol Rev 86(3):640–657CrossRefPubMedGoogle Scholar
  46. Van Leeuwen T, Tirry L, Nauen R (2006) Complete maternal inheritance of bifenazate resistance in Tetranychus urticae Koch (Acari : Tetranychidae) and its implications in mode of action considerations. Insect Biochem Mol Biol 36(11):869–877CrossRefPubMedGoogle Scholar
  47. Van Leeuwen T, Vanholme B, Van Pottelberge S et al (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci USA 105(16):5980–5985CrossRefPubMedCentralPubMedGoogle Scholar
  48. Verbeke G, Molenberghs G (eds) (2000) Linear mixed models for longitudinal data. Springer, New YorkGoogle Scholar
  49. Via S, Lande R (1985) Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution 39(3):505–522CrossRefGoogle Scholar
  50. Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc R Soc B Biol Sci 270(1526):1857–1865CrossRefGoogle Scholar
  51. Weisburg WG, Barns SM, Pelletier DA et al (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173(2):697–703PubMedCentralPubMedGoogle Scholar
  52. Yano S, Takafuji A (2002) Variation in the life history pattern of Tetranychus urticae (Acari : Tetranychidae) after selection for dispersal. Exp Appl Acarol 27(1–2):1–10CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Katrien Hilde Petra Van Petegem
    • 1
    Email author
  • Julien Pétillon
    • 1
    • 2
  • David Renault
    • 3
  • Nicky Wybouw
    • 4
    • 5
  • Thomas Van Leeuwen
    • 5
  • Robby Stoks
    • 6
  • Dries Bonte
    • 1
  1. 1.Terrestrial Ecology Unit, Department of BiologyGhent UniversityGhentBelgium
  2. 2.EA 7316 Biodiversité et Gestion des TerritoiresUniversité de Rennes 1Rennes CedexFrance
  3. 3.UMR CNRS 6553 EcobioUniversité de Rennes 1Rennes CedexFrance
  4. 4.Laboratory of Agrozoology, Department of Crop ProtectionGhent UniversityGhentBelgium
  5. 5.Institute for Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands
  6. 6.Laboratory of Aquatic Ecology, Evolution and ConservationKU LeuvenLeuvenBelgium

Personalised recommendations