Advertisement

Evolutionary Ecology

, Volume 28, Issue 6, pp 1095–1104 | Cite as

Do ecological niches differ between sexual and asexual lineages of an aphid species?

  • Aude Gilabert
  • Jean-Christophe Simon
  • Charles-Antoine Dedryver
  • Manuel Plantegenest
Original Paper

Abstract

According to environmental-based theories on the maintenance of sexual reproduction, sexual and asexual populations may coexist if they occupy different ecological niches. The aphid Rhopalosiphum padi offers a good opportunity to test this hypothesis since sexual and asexual lineages show local coexistence during a large part of their respective life-cycles. Because these two reproductive variants are morphologically identical but genetically distinct, we first characterized them using genetic markers in populations of R. padi in areas where sexual and asexual lineages may occur in sympatry. We then inferred the natal host plant of sexual and asexual genotypes by analysing stable isotopic ratios and showed that sexual ones mostly originated from C3 Poaceae while asexual ones originated from C3 and C4 plants, although the majority came from C4 Poaceae. These findings indicate that ecological niches of sexual and asexual lineages of R. padi differ, offering a plausible explanation for the local coexistence of the two reproductive modes in this species through habitat specialisation.

Keywords

Rhopalosiphum padi Isotopic analyses Reproductive mode Habitat differentiation Maintenance of sex 

Notes

Acknowledgments

We thank J-F. Le Gallic, P. Lhomme and L. Mieuzet for their help with sampling and genotyping, and T. Forde and J. Foucaud for comments on the manuscript. Isotopic analyses were performed at the Mylnefield Research Services (Scotland, UK). This research was supported by Bayer CropScience France and a CIFRE grant from the Association Nationale de la Recherche Technique.

References

  1. Bell G (1982) The masterpiece of nature, the evolution and genetics of sexuality. University of California Press, BerkeleyGoogle Scholar
  2. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B Biol Sci 273:1715–1727CrossRefGoogle Scholar
  3. Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst 42:411–440CrossRefGoogle Scholar
  4. Case TJ, Taper ML (1986) On the coexistence and coevolution of asexual and sexual competitors. Evolution 40:366–387CrossRefGoogle Scholar
  5. Delmotte F (2001) Evolution des modes de reproduction chez le puceron Rhopalosiphum padi (L.): apports de la génétique des populations et de la phylogénie moléculaire. Thèse de doctorat. pp. Ecole Nationale Supérieure d’Agronomie de Rennes, RennesGoogle Scholar
  6. Delmotte F, Leterme N, Gauthier JP, Rispe C, Simon JC (2002) Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol Ecol 11:711–723PubMedCrossRefGoogle Scholar
  7. Doncaster CP, Pound GE, Cox SJ (2000) The ecological cost of sex. Nature 404:281–285PubMedCrossRefGoogle Scholar
  8. Fox J, Weisberg S (2011) An R companion to applied regression, second edition. Thousand Oaks, Sage. http://www.r-project.org/package/car
  9. Gilabert A, Simon JC, Mieuzet L, Halkett F, Stoeckel S, Plantegenest M, Dedryver CA (2009) Climate and agricultural context shape reproductive mode variation in an aphid crop pest. Mol Ecol 18:3050–3061PubMedCrossRefGoogle Scholar
  10. Glesener RR, Tilman D (1978) Sexuality and components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals. Am Nat 112:659–673CrossRefGoogle Scholar
  11. Haag CR, Ebert D (2004) A new hypothesis to explain geographic parthenogenesis. Ann Zool Fenn 41:539–544Google Scholar
  12. Halkett F, Plantegenest M, Prunier-Leterme N, Mieuzet L, Delmotte F, Simon JC (2005) Admixed sexual and facultatively asexual aphid lineages at mating sites. Mol Ecol 14:325–336PubMedCrossRefGoogle Scholar
  13. Halkett F, Plantegenest M, Bonhomme J, Simon JC (2008) Gene flow between sexual and facultatively asexual lineages of an aphid species and the maintenance of reproductive mode variation. Mol Ecol 17:2998–3007PubMedCrossRefGoogle Scholar
  14. Hartfield M, Keightley PD (2012) Current hypotheses for the evolution of sex and recombination. Integr Zool 7:192–209PubMedCrossRefGoogle Scholar
  15. Hoffmann AA, Reynolds KT, Nash MA, Weeks AR (2008) A high incidence of parthenogenesis in agricultural pests. Proc R Soc B Biol Sci 275:2473–2481CrossRefGoogle Scholar
  16. Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440PubMedCrossRefGoogle Scholar
  17. Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562PubMedCrossRefGoogle Scholar
  18. Lehto MP, Haag CR (2010) Ecological differentiation between coexisting sexual and asexual strains of Daphnia pulex. J Anim Ecol 79:1241–1250PubMedCrossRefGoogle Scholar
  19. Lynch M (1984) Destabilizing hybridization, general-purpose genotypes and geographic parthenogenesis. Q Rev Biol 59:257–290CrossRefGoogle Scholar
  20. Mole S, Joern A, Oleary MH, Madhavan S (1994) Spatial and temporal variation in carbon isotope discrimination in prairie graminoids. Oecologia 97:316–321Google Scholar
  21. Muller HJ (1964) The relation of recombination to mutational advance. Mutat Res 1:2–9CrossRefGoogle Scholar
  22. Plantegenest M, Le May C, Fabre F (2007) Landscape epidemiology of plant diseases. J R Soc Interface 4:963–972PubMedCrossRefPubMedCentralGoogle Scholar
  23. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  24. R Development Core Team (2012) R: a language and environment for statistical computing. pp. R Foundation for Statistical Computing 2009, Vienna, AustriaGoogle Scholar
  25. Rispe C, Simon J-C, Pierre J-S (1996) Fitness comparison between clones differing in their ability to produce sexuals in the aphid Rhopalosiphum padi. Entomol Exp Appl 80:469–474CrossRefGoogle Scholar
  26. Simon J-C, Rispe C, Sunnucks P (2002) Ecology and evolution of sex in aphids. Trends Ecol Evol 17:34–39CrossRefGoogle Scholar
  27. Vandel A (1928) La parthénogénèse géographique. Contribution à l’étude biologique et cytologique de la parthénogénèse naturelle. Bulletin biologique de la France et de la Belgique 62:164–281Google Scholar
  28. Vialatte A, Dedryver CA, Simon JC, Galman M, Plantegenest M (2005) Limited genetic exchanges between populations of an insect pest living on uncultivated and related cultivated host plants. Proc R Soc B Biol Sci 272:1075–1082CrossRefGoogle Scholar
  29. Vialatte A, Simon J-C, Dedryver C-A, Fabre F, Plantegenest M (2006) Tracing individual movements of aphids reveals preferential routes of population transfers in agroecosystems. Ecol Appl 16:839–844PubMedCrossRefGoogle Scholar
  30. West SA, Lively CM, Read AF (1999) A pluralist approach to sex and recombination. J Evol Biol 12:1003–1012CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.INRA UMR 1349 IGEPPLe RheuFrance
  2. 2.MIVEGEC (UMR CNRS/IRD/UM1/UM2 5290), CHRU de MontpellierMontpellierFrance
  3. 3.Agrocampus-ouest UMR 1349 IGEPPRennes CedexFrance

Personalised recommendations