Advertisement

Evolutionary Ecology

, Volume 29, Issue 1, pp 185–204 | Cite as

Intraspecific variation in clutch size and maternal investment in pueriparous and larviparous Salamandra salamandra females

  • Guillermo Velo-Antón
  • Xavier Santos
  • Iago Sanmartín-Villar
  • Adolfo Cordero-Rivera
  • David Buckley
Original Paper

Abstract

Amphibian reproductive modes are diverse and are characterised by complex adaptations, including vast variability in life history traits and different parental investment strategies. For instance, viviparity is rare in urodeles despite the potential ecological advantages gained in such populations by having semi-independency from water. The fire salamander, Salamandra salamandra, shows remarkable intraspecific variation in reproductive modes, with two strategies co-occurring: a common reproductive mode, larviparity (parturition of aquatic larvae), and a phylogenetically derived reproductive mode, pueriparity (parturition of terrestrial juveniles). Pueriparous populations of S. salamandra have at least two independent origins, the first originating from its northern distribution in the Iberian Peninsula, and the second at two insular populations on the northwestern Iberian coast. Here, we analyse the patterns of variability of some life-history traits in larviparous and pueriparous populations of S. salamandra, including pueriparous populations from the two independent origins, to understand how these traits relate to the evolutionary transitions in reproductive modes in S. salamandra. Our study shows differences in female body size and clutch and brood size between larviparous and pueriparous fire salamanders. We did not find differences in female investment between reproductive modes, and thus, the evolution to pueriparity in S. salamandra is likely characterised by the re-allocation of eggs to matrotrophy. Our study also confirms pueriparity and larviparity as the characteristic reproductive modes for insular and coastal/mainland S. s. gallaica populations, respectively, revealing the potential presence of pueriparity in one coastal population. This comparative analysis sheds light on the maternal factors that might have driven, or are related to, the evolution of pueriparity in this unique biological system and sets up the basis for testing different hypotheses that include climatic, ecological, physiological, and genetic factors as drivers of this evolutionary transition.

Keywords

Islands Fire salamander Ovoviviparity Reproduction Viviparity 

Notes

Acknowledgments

We are deeply thankful to M. Casal Nantes for her generous help during field-work campaigns. We thank the employees of the National Park for facilitating our trips to the island. Fieldwork for obtaining tissue samples was done with the corresponding permits from regional administration (Galicia, Ref. 1653/2009, 014/2011, 546/2012). We also thank M. Modrell, the associated editor Martin Reichard and two anonymous reviewers for all their comments and suggestions, which have certainly improved the manuscript. G.V.-A. and X.S. are supported by Fundação para a Ciência e Tecnologia (SFRH/BPD/74834/2010 and SFRH/BPD/73176/2010, respectively). D.B. was partially supported by a JAE-DOC fellowship from the CSIC under the program “Junta para la Ampliación de Estudios” co-financed by the European Social Fund (ESF). This study was partially supported by Grants from the Organismo Autónomo Parques Nacionales (Grant 072B/2002) and by Fundação para a Ciência e a Tecnologia (FCT: PTDC/BIA-EVF/3036/2012) through EU Programme COMPETE, and by project “Biodiversity, Ecology and Global Change” co-financed by North Portugal Regional Operational Programme 2007/2013 (ON.2—O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF). This research also received support from the SYNTHESYS Project http://www.synthesys.info/ which is financed by European Community Research Infrastructure Action under the FP7 “Capacities” Programme at the Museo Museo Nacional de Ciencias Naturales (CSIC) (Ref: ES-TAF-1987).

References

  1. Alcobendas M, Castanet J (2000) Bone growth plasticity among populations of Salamandra salamandra: interactions between internal and external factors. Herpetologica 56:14–26Google Scholar
  2. Alcobendas M, Dopazo H, Alberch P (1996) Geographic variation in allozymes of populations of Salamandra salamandra (Amphibia: Urodela) exhibiting distinct reproductive modes. J Evol Biol 9:83–102CrossRefGoogle Scholar
  3. Alcobendas M, Buckley D, Tejedo M (2004) Variability in survival, growth and metamorphosis in the larval fire salamander (Salamandra salamandra): effects of larval birth size, sibship and environment. Herpetologica 60:232–245CrossRefGoogle Scholar
  4. AmphibiaWeb (2014) Information on amphibian biology and conservation. Berkeley, CA. http://amphibiaweb.org. Accessed 22 Jan 2014
  5. Beukema W, de Pous P, Donaire D et al (2010) Biogeography and contemporary climatic differentiation among Moroccan Salamandra algira. Biol J Linn Soc 101:626–641CrossRefGoogle Scholar
  6. Blackburn DG (2000) Reptilian viviparity: past research, future directions, and appropriate models. Comp Biochem Phys A Mol Int Phys 127:391–409CrossRefGoogle Scholar
  7. Blackburn DG (2014) Evolution of vertebrate viviparity and specializations for fetal nutrition: a quantitative and qualitative analysis. J Morphol. doi: 10.1002/jmor.20272 PubMedGoogle Scholar
  8. Bleu J, Heulin B, Haussy C, Meylan S, Massot M (2012) Experimental evidence of early costs o reproduction in conspecific viviparous and oviparous lizards. J Evol Biol 25:1264–1274PubMedCrossRefGoogle Scholar
  9. Buckley D (2003) La evolución del viviparismo en Salamandra salamandra (Linnaeus, 1758). PhD Dissertation. Universidad Autónoma de Madrid, SpainGoogle Scholar
  10. Buckley D (2012) Evolution of viviparity in salamanders (Amphibia, Caudata). In: eLS. Wiley, Chichester. doi: 10.1002/9780470015902.a0022851
  11. Buckley D, Alcobendas M, García-París M, Wake MH (2007) Heterochrony, cannibalism, and the evolution of viviparity in Salamandra salamandra. Evol Dev 9:105–115PubMedCrossRefGoogle Scholar
  12. Caley MJ, Schwarzkopf L, Shine R (2001) Does total reproductive effort evolve independently of offspring size? Evolution 55:1245–1248PubMedCrossRefGoogle Scholar
  13. Clutton-Brock TH (2001) The evolution of parental care. Princeton University Press, Princeton, NJGoogle Scholar
  14. Cordero Rivera A, Velo-Antón G, Galán P (2007) Ecology of amphibians in small coastal Holocene islands: local adaptations and the effect of exotic tree plantations. Munibe 25:94–103Google Scholar
  15. Cunningham EJ (2002) Aves (birds). In: eLS. Wiley, Chichester. doi: 10.1038/npg.els.0001548
  16. Dias JMA, Boski T, Rodrigues A et al (2000) Coast line evolution in Portugal since the last glacial maximum until present: a synthesis. Mar Geol 170:177–186CrossRefGoogle Scholar
  17. Dopazo HJ, Alberch P (1994) Preliminary results on optional viviparity and intrauterine siblicide in Salamandra salamandra populations from northern Spain. Mertensiella 4:125–138Google Scholar
  18. Dopazo HJ, Korenblum M (2000) Viviparity in Salamandra salamandra (Amphibia: Salamandridae): adaptation or exaptation? Herpetologica 56:144–152Google Scholar
  19. Galán P (2007) Viviparismo y distribución de Salamandra salamandra bernardezi en el norte de Galicia. Bol Asoc Esp Herp 18:44–48Google Scholar
  20. Galán P, Velo-Antón G, Cordero Rivera A (2011) Puesta de huevos infecundos en Salamandra salamandra. Bol Asoc Esp Herp 22:1–3Google Scholar
  21. García-París M, Alcobendas M, Buckley D, Wake DB (2003) Dispersal of viviparity across contact zones in Iberian populations of fire salamanders (Salamandra) inferred from discordance of genetic and morphological traits. Evolution 57:129–143PubMedCrossRefGoogle Scholar
  22. Gomez-Mestre I, Pyron RA, Wiens JJ (2012) Phylogenetic analyses reveal unexpected patterns in the evolution of reproductive modes in frogs. Evolution 66:3687–3700PubMedCrossRefGoogle Scholar
  23. Goodwin NB, Dulvy NK, Reynolds JD (2002) Life-history correlates of the evolution of live bearing in fishes. Philos Trans R Soc B 357:259–267CrossRefGoogle Scholar
  24. Gower D, Giri V, Dharne MS, Shouche YS (2008) Frequency of independent origins of viviparity among caecilians (Gymnophiona): evidence from the first ‘live-bearing’ Asian amphibian. J Evol Biol 21:1220–1226PubMedCrossRefGoogle Scholar
  25. Greven H (1998) Survey of the oviduct of salamandrids with special reference to the viviparous species. J Exp Zool 282:507–525PubMedCrossRefGoogle Scholar
  26. Greven H (2011) Maternal adaptations to reproductive modes in amphibians. In: Norris P, Lopez K (eds) Hormones and reproduction of vertebrates, volume 2, amphibians. Elsevier, USA, pp 117–141Google Scholar
  27. Harrison RM (2001) Reproduction in mammals: general overview. In: eLS. Wiley, Chichester. doi: 10.1038/npg.els.0001855
  28. Heulin B, Osenegg K, Lebouvier M (1991) Timing of embryonic development and birth dates in oviparous and viviparous strains of Lacerta vivipara: testing the predictions of an evolutionary hypothesis. Acta Oecol 12:517–528Google Scholar
  29. Heulin B, Osenegg-Leconte K, Michel D (1997) Demography of a bimodal reproductive species of lizard (Lacerta vivipara): survival and density characteristics of oviparous populations. Herpetologica 53:432–444Google Scholar
  30. Hodges WL (2004) Evolution of viviparity in horned lizards (Phrynosoma): testing the cold-climate hypothesis. J Evol Biol 17:1230–1237PubMedCrossRefGoogle Scholar
  31. Jamieson BGM (2009) Reproductive biology and phylogeny of fishes (agnathans and bony fishes). Science Publishers, Enfield, NHCrossRefGoogle Scholar
  32. Janvier P (2001) Agnatha (lampreys, hagfishes, ostracoderms). In: eLS. Wiley, Chichester. doi: 10.1038/npg.els.0001532
  33. Joly J (1986) La réproduction de la salamandre terrestre (Salamandra salamandra L.). In: Grasse PP, Delsol M (eds) Traité de Zologie. Amphibiens, vol 14. Masson, Paris, pp 471–486Google Scholar
  34. Kaplan RH, Cooper WS (1984) The evolution of developmental plasticity in reproductive characteristics: an application of the ‘adaptive coin-flipping’ principle. Am Nat 123:393–410CrossRefGoogle Scholar
  35. Kopp M, Baur B (2000) Intra- and inter-litter variation in life-history traits in a population of fire salamanders (Salamandra salamandra terrestris). J Zool 25:231–236CrossRefGoogle Scholar
  36. Kupfer A, Müller H, Antoniazzi MM, Jared C, Greven H, Nussbaum RA, Wilkinson M (2006) Parental investment by skin feeding in a caecilian amphibian. Nature 440:926–929PubMedCrossRefGoogle Scholar
  37. Lambert SM, Wiens JJ (2013) Evolution of viviparity: a phylogenetic test of the cold-climate hypothesis in phrynosomatid lizards. Evolution 67:2614–2630PubMedCrossRefGoogle Scholar
  38. Lomolino MV (2005) Body size evolution in insular vertebrates: generality of the island rule. J Biogeogr 32:1683–1699CrossRefGoogle Scholar
  39. Pyron RA, Burbrink FT (2014) Early origin of viviparity and multiple reversions to oviparity in squamate reptiles. Ecol Lett 17:13–21PubMedCrossRefGoogle Scholar
  40. Qualls CP, Shine R (1998) Costs of reproduction in conspecific oviparous and viviparous lizards, Lerista bouganvillii. Oikos 82:539–551CrossRefGoogle Scholar
  41. Rebelo R, Leclair MH (2003) Differences in size at birth and brood size among Portuguese populations of the fire salamander, Salamandra salamandra. Herpetol J 13:179–188Google Scholar
  42. Rodríguez-Díaz T, Braña F (2012) Altitudinal variation in egg retention and rates of embryonic development in oviparous Zootoca vivipara fits predictions from the cold-climate model of the evolution of viviparity. J Evol Biol 25:1877–1887PubMedCrossRefGoogle Scholar
  43. Roitberg ES, Kuranova VN, Bulakhova NA, Orlova VF, Eplanova GV, Zinenko OI, Shamgunova RR, Hofmann S, Yakolev VA (2012) Variation of reproductive traits and female boy-size in the most widely-ranging terrestrial reptile: testing the effects of reproductive mode, lineage, and climate. Evol Biol 40:420–438CrossRefGoogle Scholar
  44. Salvador A, García-París M (2001) Anfibios Españoles. Identificación, historia Natural y Distribución. Canseco Editores, S. L, Talavera de la Reina, SpainGoogle Scholar
  45. Semlitsch RD, Schmiedehausen S (1994) Parental contributions to variation in hatchling size and its relationship to growth and metamorphosis in tadpoles of Rana lessonae and Rana esculenta. Copeia 1994:406–412CrossRefGoogle Scholar
  46. Shine R (1985) The evolution of viviparity in reptiles: an ecological analysis. In: Gans C, Billet F (eds) Biology of the reptilia. Wiley, New York, pp 605–694Google Scholar
  47. Shine R (2014) Evolution of an evolutionary hypothesis: a history of changing ideas about the adaptive significance of viviparity in reptiles. J Herpetol 48:147–161Google Scholar
  48. Statsoft Inc (2010) STATISTICA 10.0. Statsoft, Inc, Tulsa, OKGoogle Scholar
  49. Stewart JR (2003) Fetal nutrition in lecitotrophic reptiles: toward a comprehensive model for evolution of viviparity and placentation. J Morphol 274:824–843CrossRefGoogle Scholar
  50. Thiesmeier B, Haker K (1990) Salamandra salamandra bernardezi Wolterstorff 1928 aus Oviedo, Spanien, nebst Bermerkungen zu Viviparie in der Gattung Salamandra. Salamandra 26:140–154Google Scholar
  51. Travis J, Emerson SB, Blouin M (1987) A quantitative genetic analysis of larval life-history traits in Hyla crucifer. Evolution 41:45–156CrossRefGoogle Scholar
  52. Uotila U, Crespo-Díaz A, Sanz-Azkue et al (2013) Variation in the reproductive strategies of fire salamander populations in the province of Gipuzkoa (Basque Country). Munibe 61:91–101Google Scholar
  53. Veith M, Steinfartz S, Zardoya R et al (1998) A molecular phylogeny of ‘true’ salamanders (family Salamandridae) and the evolution of terrestriality of reproductive modes. J Zool Syst Evol Res 3:7–16Google Scholar
  54. Velo-Antón G (2008) Presencia de Salamandra salamandra en la isla de Tambo (Rías Bajas, Pontevedra). Bol Asoc Esp Herp 19:61–62Google Scholar
  55. Velo-Antón G, García-París M, Galán P et al (2007) The evolution of viviparity in Holocene islands: ecological adaptation versus phylogenetic descent along the transition from aquatic to terrestrial environments. J Zool Syst Evol Res 45:345–352CrossRefGoogle Scholar
  56. Velo-Antón G, Zamudio KR, Cordero-Rivera A (2012) Genetic drift and rapid evolution of viviparity in insular fire salamanders (Salamandra salamandra). Heredity 108:410–418PubMedCentralPubMedCrossRefGoogle Scholar
  57. Wade MJ, Shuster SM (2002) The evolution of parental care in the context o sexual selection: a critical reassessment of parental investment theory. Am Nat 160:285–292PubMedCrossRefGoogle Scholar
  58. Wake MH (2002) Viviparity and oviparity. In: Pagel MD (ed) Encyclopedia of evolution, vol 2. Oxford University Press, New York, pp 1141–1143Google Scholar
  59. Wake MH (2003) Reproductive modes, ontogenies, and the evolution of body forms. Anim Biol 53:209–223CrossRefGoogle Scholar
  60. Wake MH (2014) Fetal adaptations for viviparity in amphibians. J Morphol. doi: 10.1002/jmor.20271 PubMedGoogle Scholar
  61. Wells KD (2007) The ecology and behavior of amphibians. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  62. Wourms JP (1981) Viviparity: the maternal–fetal relationship in fishes. Am Zool 21:473–515Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Guillermo Velo-Antón
    • 1
  • Xavier Santos
    • 1
  • Iago Sanmartín-Villar
    • 2
  • Adolfo Cordero-Rivera
    • 2
  • David Buckley
    • 3
    • 4
  1. 1.CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Instituto de Ciências Agrárias de VairãoUniversidade do PortoVairãoPortugal
  2. 2.Grupo de Ecoloxía Evolutiva e da Conservación, Departamento de Ecoloxía e Bioloxía AnimalUniversidade de VigoPontevedraSpain
  3. 3.Departamento de Biodiversidad y Biología EvolutivaMuseo Nacional de Ciencias Naturales, CSICMadridSpain
  4. 4.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK

Personalised recommendations