Advertisement

Evolutionary Ecology

, Volume 28, Issue 5, pp 849–868 | Cite as

Floral divergence in closely related Leucospermum tottum (Proteaceae) varieties pollinated by birds and long-proboscid flies

  • Christopher Michael Johnson
  • Tianhua He
  • Anton Pauw
Original Paper

Abstract

The Proteaceae are renowned for their floral diversity but surprisingly the role of pollinators in driving evolutionary divergence in this family has been underexplored. Here we focus on recently diverged taxa to gain insight into the processes that generate diversity by testing whether two varieties of Leucospermum tottum might have originated by pollinator mediated adaptive divergence. L. tottum var. tottum has pale salmon-coloured horizontally-oriented flowers, long nectar tubes, and small volumes of concentrated nectar. L. tottum var. glabrum has red and yellow vertically oriented flowers, short nectar tubes, and large volumes of dilute nectar. Despite the morphological divergence, the varieties are indistinguishable using eight molecular markers, indicating a very early stage of differentiation. Consistent with their morphologies, L. tottum var. tottum is pollinated by long-proboscid flies (Philoliche rostrata and Philoliche gulosa), Cape sugarbirds (Promerops cafer), and, to a lesser extent, by Orange-breasted sunbirds (Anthobaphes violacea), whereas, L. tottum var. glabrum is pollinated only by Orange-breasted sunbirds. A. violacea visits both varieties, but makes more frequent contact with pollen presenters when foraging on L. tottum var. glabrum. The exclusion of birds caused a steeper reduction in seed production in L. tottum var. glabrum than in L. tottum var. tottum, consistent with specialization for bird-pollination in this variety. Additionally, L. tottum var. glabrum exhibits autogamy, whereas L. tottum var. tottum does not. Floral divergence between the two L. tottum varieties corresponds with divergence in pollinator use.

Keywords

Adaptive divergence Bird-pollination Leucospermum tottum Long-proboscid fly pollination Pollinator driven speciation Pollinator shifts Reproductive assurance 

Notes

Acknowledgments

We thank Clive Kerr, The Mountain Club of South Africa, and Cape Nature for allowing access to the sites involved in this study, and Dr. Sim Lin Lim for assisting in assembling DNA sequence dataset and Marinus de Jager for help with the observational data. Additionally we thank Stellenbosch University for funding as well as Kari Segraves and Timo van der Neit for recommendations on a prior draft which improved this study. This study was partially supported by the Australian Research Council (DP120103389).

Supplementary material

10682_2014_9712_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)

References

  1. Aigner PA (2004) Floral specialization without trade-offs: optimal corolla flare in contrasting pollination environments. Ecology 85:2560–2569CrossRefGoogle Scholar
  2. Anderson B, Alexandersson R, Johnson SD (2010) Evolution and coexistence of pollination ecotypes in an African Gladiolus (Iridaceae). Evolution 64:960–972PubMedCrossRefGoogle Scholar
  3. Armbruster WS, Pélabon C, Hansen TF, Mulder CPH (2004) Floral integration and modularity: distinguishing complex adaptations from genetic constraints. In: Pigliucci M, Preston KA (eds) The evolutionary biology of complex phenotypes. Oxford University Press, Oxford, pp 23–49Google Scholar
  4. Baker HG (1955) Self-compatibility and establishment after “long-distance” dispersal. Evolution 9:347–368CrossRefGoogle Scholar
  5. Baker HG (1959) Reproductive methods as factors in speciation in flowering plants. Cold Spring Harb Symp Quant Biol 24:177–191PubMedCrossRefGoogle Scholar
  6. Barker NP, Weston PH, Rutschmann F, Sauquet H (2007) Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partially congruent with the timing of the break-up of Gondwana. J Biogeogr 34:2012–2027CrossRefGoogle Scholar
  7. Beardsley PM, Yen A, Olmstead RG (2003) AFLP phylogeny of Mimulus section Erythranthe and the evolution of hummingbird pollination. Evolution 57:1397–1410PubMedCrossRefGoogle Scholar
  8. Biccard A, Midgley JJ (2009) Rodent pollination in Protea nana. S Afr J Bot 75:720–725CrossRefGoogle Scholar
  9. Bond WJ (1994) Do mutualisms matter—assessing the impact of pollinator and disperser disruption on plant extinction. Philos Trans R Soc B Biol Sci 344:83–90CrossRefGoogle Scholar
  10. Bradshaw HD, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–178PubMedCrossRefGoogle Scholar
  11. Castellanos MC, Wilson P, Thomson JD (2003) Pollen transfer by hummingbirds and bumblebees, and the divergence of pollination modes in Penstemon. Evolution 57:2742–2752PubMedCrossRefGoogle Scholar
  12. Chalcoff VR, Aizen MA, Ezcurra C (2012) Erosion of a pollination mutualism along an environmental gradient in a south Andean treelet, Embothrium coccineum (Proteaceae). Oikos 121:471–480CrossRefGoogle Scholar
  13. Combs JK, Pauw A (2009) Preliminary evidence that the long-proboscid fly, Philoliche gulosa, pollinates Disa karonica and its proposed Batesian model Pelargonium stipulacea. S Afr J Bot 75:757–761CrossRefGoogle Scholar
  14. Darwin C (1862) On the various contrivances by which British and foreign orchids are fertilised by insects, and on the good effects of intercrossing. John Murray, London, UKGoogle Scholar
  15. Devoto M, Montaldo NH, Medan D (2006) Mixed hummingbird: long-proboscid fly pollination in “ornithophilous” Emothrium coccineum (Proteaceae) along a rainfall gradient in Patagonia, Argentina. Austral Ecol 31:512–519CrossRefGoogle Scholar
  16. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973PubMedCentralPubMedCrossRefGoogle Scholar
  17. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  18. Faegri K, van der Pijl L (1970) The principles of pollination ecology, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  19. Fenster CB, Martén-Rodríguez S (2007) Reproductive assurance and the evolution of pollination specialization. Int J Plant Sci 168:215–228CrossRefGoogle Scholar
  20. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403CrossRefGoogle Scholar
  21. Fleming PA, Nicolson SW (2002) How important is the relationship between Protea humiflora (Proteaceae) and its non-flying mammal pollinators? Oecologia 132:361–368CrossRefGoogle Scholar
  22. Friedman J, Barrett SCH (2008) A phylogenetic analysis of the evolution of wind pollination in the angiosperms. Int J Plant Sci 169:49–58CrossRefGoogle Scholar
  23. Galen C (1989) Measuring pollinator-mediated selection on morphometric floral traits: bumblebees and the alpine sky pilot, Polemonium viscosum. Evolution 43:882–890CrossRefGoogle Scholar
  24. Geerts S, Pauw A (2009) African sunbirds hover to pollinate and invasive hummingbird pollinated plant. Oikos 118:573–579CrossRefGoogle Scholar
  25. Goldblatt P, Manning JC (1995) Pollination biology of Lapeirousia subgenus Lapeirousia (Iridaceae) in southern Africa; Floral divergence and adaptation for long-tongued fly pollination. Ann Mo Bot Gard 82:517–534CrossRefGoogle Scholar
  26. Goldblatt P, Manning JC (2000) The long-proboscid fly pollination system in southern Africa. Ann Mo Bot Gard 87:146–170CrossRefGoogle Scholar
  27. Gómez JM, Zamora R (1999) Generalization vs. specialization in the pollination system of Hormathophylla spinosa (Cruciferae). Ecology 80:796–805CrossRefGoogle Scholar
  28. Hargreaves SL, Johnson SD, Nol E (2004) Do floral syndromes predict specialization in plant pollination systems? An experimental test in an “ornithophilous” African Protea. Oecologia 140:295–301PubMedCrossRefGoogle Scholar
  29. Herrera CM (1988) Variation in mutualisms: the spatio-temporal mosaic of a pollinator assemblage. Biol J Linn Soc 35:95–125CrossRefGoogle Scholar
  30. Hodges SA (1997) Floral nectar spurs and diversification. Int J Plant Sci 158:S81–S88CrossRefGoogle Scholar
  31. Johnson SD (1997) Pollination ecotypes of Satyrium hallackii (Orchidaceae) in South Africa. Bot J Linn Soc 123:225–235Google Scholar
  32. Johnson SD (2010) The pollination niche and its role in the diversification and maintenance of the southern African flora. Philos Trans R Soc B Biol Sci 365:499–516CrossRefGoogle Scholar
  33. Johnson CM, Pauw A (2014) Adaptation for rodent pollination in Leucospermum arenarium (Proteaceae) despite rapid pollen loss during grooming. Ann Bot 113:931–938PubMedCrossRefGoogle Scholar
  34. Johnson SD, Steiner KE (1997) Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution 51:45–53CrossRefGoogle Scholar
  35. Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. Trends Ecol Evol 15:140–143PubMedCrossRefGoogle Scholar
  36. Johnson SD, Linder HP, Steiner KE (1998) Phylogeny and radiation of pollination systems in Disa (Orchidaceae). Am J Bot 85:402–411PubMedCrossRefGoogle Scholar
  37. Johnson SD, Newman E, Anderson B (2012) Preliminary observations of insect pollination in Protea punctata (Proteaceae). S Afr J Bot 83:63–67CrossRefGoogle Scholar
  38. Kalisz S, Vogler DW, Hanley KM (2004) Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 430:884–887PubMedCrossRefGoogle Scholar
  39. Lamont B (1985) The comparative reproductive biology of three Leucospermum species (Proteaceae) in relation to fire responses and breeding system. Aust J Bot 33:139–145CrossRefGoogle Scholar
  40. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW and ClustalX version 2. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  41. Macior LW (1986) Floral resource sharing by bumblebees and hummingbirds in Pedicularis (Scrophulariaceae) pollination. Bull Torrey Bot Club 113:101–109CrossRefGoogle Scholar
  42. Manning JC (2004) Needles and pins: the exciting discovery of a new pollination system in the ribbon pincushion, Leucospermum tottum. Veld & Flora 90:10–14Google Scholar
  43. Manning JC, Goldblatt P (1996) The Prosoeca peringueyi (Diptera: Nemistrinidae) pollination guild in southern Africa: long-tongued flies and their tubular flowers. Ann Mo Bot Gard 83:67–86CrossRefGoogle Scholar
  44. Manning JC, Goldblatt P (1997) The Moegistorhynchus longirostris (Diptera: Nemestrinidae) pollination guild: Long-tubed flowers and a specialized long-proboscid fly pollination system in southern Africa. Plant Syst Evol 206:51–69CrossRefGoogle Scholar
  45. Mast AR, Jones EH, Havery SP (2005) An assessment of old and new DNA sequence evidence for the paraphyly of Banksia with respect to Dryandra (Proteaceae). Aust Syst Bot 18:75–88CrossRefGoogle Scholar
  46. Moeller DA (2006) Geographic structure of pollinator communities, reproductive assurance, and the evolution of self-pollination. Ecology 87:1510–1522PubMedCrossRefGoogle Scholar
  47. Morgan MT, Wilson WG (2005) Self-fertilization and the escape from pollen limitation in variable pollination environments. Evolution 59:1143–1148PubMedCrossRefGoogle Scholar
  48. Muchhala N, Caiza A, Vizuete JC, Thomson JD (2008) A generalized pollination system in the tropics: bats, birds and Aphelandra acanthus. Ann Bot 103:1481–1487CrossRefGoogle Scholar
  49. Newman E, Anderson B, Johnson SD (2012) Flower colour adaptations in a mimetic orchid. Proc R Soc B Biol Sci 279:2309–2313CrossRefGoogle Scholar
  50. Ollerton J (1996) Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant-pollinator systems. J Ecol 84:767–769CrossRefGoogle Scholar
  51. Ollerton J (1998) Sunbird surprise for syndromes. Nature 6695:726–727CrossRefGoogle Scholar
  52. Ollerton J, Killick A, Lamborn E, Watts S, Whiston M (2007) Multiple meanings and modes: on the many ways to be a generalist flower. Taxon 56:717–728CrossRefGoogle Scholar
  53. Olsson K, Ågren J (2002) Latitudinal population differentiation in phenology, life history and flowering phenology in the perennial herb Lythrum salicaria. J Evol Biol 15:983–996CrossRefGoogle Scholar
  54. Pauw A (2013) Can pollination niches facilitate plant coexistence? Trends Ecol Evol 28:30–37PubMedCrossRefGoogle Scholar
  55. Pauw A, Softberg J, Waterman RJ (2009) Flies and flowers in Darwin’s race. Evolution 63:268–279PubMedCrossRefGoogle Scholar
  56. Pérez F, Arroyo MTK, Medel R, Hershkovitz MA (2006) Ancestral reconstruction of flower morphology and pollination systems in Schizanthus (Solanaceae). Am J Bot 93:1029–1038PubMedCrossRefGoogle Scholar
  57. Pérez F, Arroyo MTK, Armesto JJ (2009) Evolution of autonomous selfing accompanies increased specialization in the pollination system of Schizanthus (Solanaceae). Am J Bot 96:1168–1176PubMedCrossRefGoogle Scholar
  58. Pérez-Barrales R, Arroyo J, Armbruster WS (2007) Differences in pollinator faunas may generate differences in floral morphology and integration in Narcissus papyraceus (Alarcissiopapyraceris). Oikos 116:1904–1918CrossRefGoogle Scholar
  59. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  60. Robertson JL, Wyatt R (1990) Evidence for pollination ecotypes in the yellow-fringed orchid, Platanthera ciliaris. Evolution 44:121–133CrossRefGoogle Scholar
  61. Rourke JP (1971) Taxonomic studies on Leucospermum. Journal of South African Botany Supplementary Volume No. 8. Trustees of the National Botanical Gardens of South Africa, Kirstenbosch, South AfricaGoogle Scholar
  62. Rymer PD, Manning JC, Goldblatt P, Powell MP, Savolainen V (2010) Evidence of recent and continuous speciation in a biodiversity hotspot: a population genetic approach in southern African gladioli (Gladiolus; Iridaceae). Mol Ecol 19:4765–4782PubMedCrossRefGoogle Scholar
  63. Sahley CT (1996) Bat and hummingbird pollination of an autotetraploid columnar cactus, Weberbauerocereus weberbaueri (Cactaceae). Am J Bot 83:1329–1336CrossRefGoogle Scholar
  64. Sauquet H, Western PH, Anderson CL, Barker NP, Cantrill DJ, Mast R, Savolainen V (2009) Contrasted patterns of hyperdiversification in Mediterranean hotspots. Proc Natl Acad Sci USA 106:221–225PubMedCentralPubMedCrossRefGoogle Scholar
  65. Schemske DW, Horvitz CC (1989) Temporal variation in selection on floral character. Evolution 43:461–465CrossRefGoogle Scholar
  66. Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P (2011) Magic traits in speciation: ‘magic’ but not rare? Trends Ecol Evol 26:389–397PubMedCrossRefGoogle Scholar
  67. Stebbins G (1970) Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annu Rev Ecol Syst 1:307–326CrossRefGoogle Scholar
  68. Steenhuisen SL, Johnson SD (2011) The influence of pollinators and seed predation on seed production in dwarf grassland Protea “sugarbushes” (Proteaceae). S Afr J Bot 79:77–83CrossRefGoogle Scholar
  69. Steenhuisen SL, Van der Bank H, Johnson SD (2012) The relative contributions of insect and bird pollinators to outcrossing in an African Protea (Proteaceae). Am J Bot 99:1104–1111PubMedCrossRefGoogle Scholar
  70. Steiner KE (1998) The evolution of beetle pollination in a South African orchid. Am J Bot 85:1180–1193PubMedCrossRefGoogle Scholar
  71. Turesson G (1922) The genotypical response of the plant species to the habitat. Hereditas 3:211–350CrossRefGoogle Scholar
  72. Ushimaru A, Hyodo F (2005) Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour. Evol Ecol Res 7:151–160Google Scholar
  73. Ushimaru A, Dohzono I, Takami Y, Hyodo F (2009) Flower orientation enhances pollen transfer in bilaterally symmetrical flowers. Oecologia 160:667–674PubMedCrossRefGoogle Scholar
  74. van der Niet T, Pirie MD, Shuttleworth A, Johnson SD, Midgley JJ (2014) Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii?. Ann Bot 113:301–315PubMedCrossRefGoogle Scholar
  75. Waser NM (1998) Pollination, angiosperm speciation, and the nature of species boundaries. Oikos 82:198–201CrossRefGoogle Scholar
  76. Waterman RJ, Bidartondo MI, Softberg J, Combs JK, Gebauer G, Savolainen V, Barraclough TG, Pauw A (2011) The effects of above- and belowground mutualisms on orchid speciation and coexistence. Am Nat 177:E54–E68PubMedCrossRefGoogle Scholar
  77. Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 477:706–709CrossRefGoogle Scholar
  78. Wiens D, Rourke JP (1978) Rodent pollination in South African Protea spp. Nature 276:71–73CrossRefGoogle Scholar
  79. Zang F, Hui C, Pauw A (2013) Adaptive divergence in Darwin’s race: how coevolution can generate trait diversity in a pollination system. Evolution 67:548–560CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christopher Michael Johnson
    • 1
  • Tianhua He
    • 2
  • Anton Pauw
    • 1
  1. 1.Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
  2. 2.Department of Environment and AgricultureCurtin UniversityPerthAustralia

Personalised recommendations