Evolutionary Ecology

, Volume 28, Issue 5, pp 829–848 | Cite as

Genetic divergence and evidence for sympatric host-races in the highly polyphagous brown tail moth, Euproctis chrysorrhoea (Lepidoptera: Erebidae)

  • Joana F. Marques
  • Hong-Lei Wang
  • Glenn P. Svensson
  • Enric Frago
  • Olle Anderbrant
Original Paper

Abstract

The brown tail moth (BTM) Euproctis chrysorrhoea (Linnaeus 1758) (Lepidoptera: Erebidae) is a forest and ornamental pest in Europe and the United States. Its extreme polyphagy, and documented phenological shift associated with host use suggest the presence of distinct host-races. To test this hypothesis, we sampled BTM infesting different host species in several locations along its distribution, and used DNA sequence data (a total of 1,672 bp from cytochrome c oxidase subunit I, elongation factor 1-alpha, and wingless) to produce haplotype networks and reconstruct the phylogenetic relationships between individuals. Population genetic diversity indices pointed out a higher genetic diversity in Europe, particularly in the samples from southern Spain and southern England. Lower FST values were found between geographically closer populations when compared to more distant ones, but analyses of molecular variance and Mantel tests failed to reveal geographically associated genetic differentiation. However, haplotype networks and phylogenetic reconstructions revealed a previously unknown genetic differentiation within the BTM, with one lineage circumscribed to southern Europe. Although BTM haplotypes did not cluster according to their host plant, host-associated haplotypes were observed within certain geographic regions. Hence, our data support the existence of host-races of BTM within southern Spain and southern England, where populations from different hosts occur in sympatry.

Keywords

Brown tail moth Haplotype diversity Host-races Molecular phylogeny Population differentiation Sympatry 

Supplementary material

10682_2014_9701_MOESM1_ESM.docx (124 kb)
Supplementary material 1 (DOCX 123 kb)
10682_2014_9701_MOESM2_ESM.docx (323 kb)
Supplementary material 2 (DOCX 322 kb)

References

  1. Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20:99–105PubMedCrossRefGoogle Scholar
  2. Barbosa P, Schaefer PW (1997) Comparative analysis of patterns of invasion and spread of related lymantriids. In: Watt AD, Stork NE, Hunter MD (eds) Forests and insects. Chapman and Hall, London, pp 153–175Google Scholar
  3. Barman AK, Parajulee MN, Sansone CG, Suh CPC, Medina RF (2012) Geographic pattern of host-associated differentiation in the cotton flea hopper, Pseudatomoscelis seriatus. Entomol Exp Appl 143:31–41CrossRefGoogle Scholar
  4. Behere GT, Tay WT, Russell DA, Heckel DG, Appleton BR, Kranthi KR, Batterham P (2007) Mitochondrial DNA analysis of field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) and of its relationship to H. zea. BMC Evol Biol 7:117PubMedCentralPubMedCrossRefGoogle Scholar
  5. Behere GT, Tay WT, Russell DA, Kranthi KR, Batterham P (2013) Population genetic structure of the cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in India as inferred from EPIC-PCR DNA markers. PLoS ONE 8:e53448PubMedCentralPubMedCrossRefGoogle Scholar
  6. Celikel G, Demirsoy L, Demirsoy H (2008) The strawberry tree (Arbutus unedo L.) selection in Turkey. Sci Hortic 118:115–119CrossRefGoogle Scholar
  7. Cho Y, Park JS, Kim MJ, Choi D-S, Nam S-H, Kim I (2013) Genetic relationships between Mt. Halla and Mongolian populations of Hipparchia autonoe (Lepidoptera: Nymphalidae). Entomol Res 43:183–192CrossRefGoogle Scholar
  8. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  9. Coyne JA, Orr HA (2004) Speciation. Sinauer, SunderlandGoogle Scholar
  10. Dambroski H, Feder JL (2007) Host plant and latitude-related diapause variation in Rhagoletis pomonella: a test for multifaceted life history adaptation on different stages of diapause development. J Evol Biol 20:2101–2112PubMedCrossRefGoogle Scholar
  11. Delrio G, Luciano P (1985) The parasites and predators of Euproctis chrysorrhoea L. in Sardinia (preliminary note). In: Atti XIV Congresso Nazionale Italiano di Entomologia Sotto Gli Auspici dell’Accademia Nazionale Italiana di Entomologia. Della Società Entomologica Italiana e Della International Union of Biological Sciences, Palermo, Italy, 28 May–1 June, 1985Google Scholar
  12. Drès M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philos Trans R Soc B 357:471–492CrossRefGoogle Scholar
  13. Elkinton JS, Parry D, Boettner GH (2006) Implicating an introduced generalist parasitoid in the invasive browntail moth’s enigmatic demise. Ecology 87:2664–2672PubMedCrossRefGoogle Scholar
  14. Elkinton JS, Preisser E, Boettner G, Parry D (2008) Factors influencing larval survival of the invasive browntail moth (Lepidoptera: Lymantriidae) in relict North American populations. Environ Entomol 37:1429–1437PubMedCrossRefGoogle Scholar
  15. Excoffier L, Lischer HEL (2010) Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  16. Forestry Compendium (2005) Euproctis chrysorrhoea L. (Lepidoptera: Lymantriidae) Datasheet. CAB International, Wallingford, Connecticut. http://www.cabi.org/compendia/fc/
  17. Frago E, Selfa J, Pujade-Villar J, Guara M, Bauce É (2009) Age and size thresholds for pupation and developmental polymorphism in the browntail moth, Euproctis chrysorrhoea under conditions that either emulate diapause or prevent it. J Insect Physiol 55:952–958PubMedCrossRefGoogle Scholar
  18. Frago E, Guara M, Pujade-Villar J, Selfa J (2010) Winter feeding leads to a shifted phenology in the browntail moth Euproctis chrysorrhoea on the evergreen strawberry tree Arbutus unedo. Agric For Entomol 12:381–388CrossRefGoogle Scholar
  19. Futuyma DJ (2008) Sympatric speciation: norm or exception? In: Tilmon KJ (ed) Evolutionary biology of herbivorous insects. University of California Press, Berkley, pp 136–148Google Scholar
  20. Geiselhardt S, Otte T, Hilker M (2012) Looking for a similar partner: host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol Lett 15:971–977PubMedCrossRefGoogle Scholar
  21. Gómez A, Lunt DH (2006) Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In: Weiss S, Ferrand N (eds) Phylogeography of Southern European. Springer, Dordrecht, pp 155–188Google Scholar
  22. Gratton P, Konopinski MK, Sbordoni V (2008) Pleistocene evolutionary history of the Clouded Apollo (Parnassius mnemosyne): genetic signatures of climate cycles and a ‘time-dependent’ mitochondrial substitution rate. Mol Ecol 17:4248–4262PubMedCrossRefGoogle Scholar
  23. Hammouti N, Schmitt T, Seitz A, Kosuch J, Veith M (2010) Combining mitochondrial and nuclear evidences: a refined evolutionary history of Erebia medusa (Lepidoptera: Nymphalidae: Satyrinae) in Central Europe based on the CO1 gene. J Zool Syst Evol Res 48:115–125CrossRefGoogle Scholar
  24. Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci 101:14812–14817PubMedCentralPubMedCrossRefGoogle Scholar
  25. Hewitt GM (2001) Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol Ecol 10:537–549PubMedCrossRefGoogle Scholar
  26. Howard LO, Fiske WF (1911) The importation into the United States of the parasites of the gipsy moth and the browntail moth, vol 91. USDA Bureau of Entomology Bulletin, WashingtonGoogle Scholar
  27. Imo M, Maixner M, Johannesen J (2013) Sympatric diversification vs. immigration: deciphering host-plant specialization in a polyphagous insect, the stolbur phytoplasma vector Hyalesthes obsoletus (Cixiidae). Mol Ecol 22:2188–2203PubMedCrossRefGoogle Scholar
  28. Jallow MFA, Cunningham JP, Zalucki MP (2004) Intra-specific variation for host plant use in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): implications for management. Crop Prot 23:955–964CrossRefGoogle Scholar
  29. Janz N (2011) Ehrlich and Raven revisited: mechanisms underlying codiversification of plants and enemies. Annu Rev Ecol Evol Syst 42:71–89CrossRefGoogle Scholar
  30. Janz N, Nylin S (2008) The oscillation hypothesis of host-plant range and speciation. In: Tilmon KJ (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California Press, Berkeley, pp 203–215Google Scholar
  31. Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 6:4PubMedCentralPubMedCrossRefGoogle Scholar
  32. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance v.3.23, web service. BMC Genetics 6:13. http://ibdws.sdsu.edu/. Accessed Sept 2013)Google Scholar
  33. Kajtoch Ł, Kubisz D, Gutowski JM, Babik W (2013) Evolutionary units of Coraebus elatus (Coleoptera: Buprestidae) in central and eastern Europe—implications for origin and conservation. Insect Conserv Divers. doi:10.1111/icad.12031
  34. Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701PubMedCrossRefGoogle Scholar
  35. Lo Verde G, Massa B (1995) Euproctis chrysorrhoea (L.) (Lepidoptera: Lymantriidae) and Phytomyza phillyreae Hering (Diptera: Agromyzidae) in the Mediterranean maquis of Pantelleria: biological data and parasitoids. Nat Sicil 19:679–691Google Scholar
  36. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  37. Norgate M, Chamings J, Pavlova A, Bull JK, Murray ND, Sunnucks P (2009) Mitochondrial DNA indicates late Pleistocene divergence of populations of Heteronympha merope, an emerging model in environmental change biology. PLoS ONE 4:e7950PubMedCentralPubMedCrossRefGoogle Scholar
  38. Özcan M, Haciseferogullari H (2007) The strawberry (Arbutus unedo L.) fruits: chemical composition, physical properties and mineral contents. J Food Eng 78:1022–1028CrossRefGoogle Scholar
  39. Porreta D, Canestrelli D, Bellini R, Celli G, Urbanelli S (2007) Improving insect pest management through population genetic data: a case study of the mosquito Ochlerotatus caspius (Pallas). J Appl Ecol 44:682–691CrossRefGoogle Scholar
  40. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  41. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  42. Santos H, Burban C, Rousselet J, Rossi J-P, Branco M, Kerdelhué C (2011) Incipient allochronic speciation in the pine processionary moth (Thaumetopoea pityocampa, Lepidoptera, Notodontidae). J Evol Biol 24:146–158PubMedCrossRefGoogle Scholar
  43. Schaefer PW (1974) Population ecology of the browntail moth (Euproctis chrysorrhoea L.) (Lepidoptera: Lymantriidae) in North America. PhD dissertation, University of MaineGoogle Scholar
  44. Schmitt T, Varga Z (2012) Extra-mediterranean refugia: the rule and not the exception? Front Zool 9:22PubMedCentralPubMedCrossRefGoogle Scholar
  45. Sharon G, Segal D, Ringo JM, Hefez A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci 107:20051–20056PubMedCentralPubMedCrossRefGoogle Scholar
  46. Silva-Brandão KL, Lyra ML, Freitas AVL (2009) Barcoding Lepidoptera: current situation and perspectives on the usefulness of a contentious technique. Neotrop Entomol 38:441–451PubMedCrossRefGoogle Scholar
  47. Smadja C, Butlin RK (2011) A framework for comparing processes of speciation in the presence of gene flow. Mol Ecol 20:5123–5140PubMedCrossRefGoogle Scholar
  48. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. W.H. Freeman and Company, New YorkGoogle Scholar
  49. Stewart JR, Lister AM (2001) Cryptic northern refugia and the origins of modern biota. Trends Ecol Evol 16:608–613CrossRefGoogle Scholar
  50. Stewart JR, Lister AM, Barnes I, Dalén L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B 277:661–671PubMedCentralPubMedCrossRefGoogle Scholar
  51. Stireman JO III, Nason JD, Heard SB (2005) Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a Goldenrod-insect community. Evolution 12:2573–2587CrossRefGoogle Scholar
  52. Svensson GP, Althof DM, Pellmyr O (2005) Replicated host-race formation in bogus yucca moths: genetic and ecological divergence of Prodoxus quinquepunctellus on yucca hosts. Evol Ecol Res 7:1139–1151Google Scholar
  53. Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:585–595PubMedCentralPubMedGoogle Scholar
  54. van Nieukerken EJ, Doorenweerd C, Stokvis FR, Groenenberg DSJ (2012) DNA barcoding of the leaf-mining moth subgenus Ectoedemia s. str. (Lepidoptera: Nepticulidae) with COI and EF1-α: two are better than one in recognizing cryptic species. Contrib Zool 81:1–24Google Scholar
  55. Wahlberg N, Wheat CW (2008) Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. Syst Biol 57:231–242PubMedCrossRefGoogle Scholar
  56. Webster SE, Galindo J, Grahame JW, Butlin RK (2012) Habitat choice and speciation. Int J Ecol 154686Google Scholar
  57. Wilson JJ (2010) Assessing the value of DNA barcodes and other priority gene regions for molecular phylogenetics of Lepidoptera. PLoS ONE 5:e10525PubMedCentralPubMedCrossRefGoogle Scholar
  58. Wright S (1943) Isolation by distance. Genetics 28:114–138PubMedCentralPubMedGoogle Scholar
  59. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD dissertation, University of Texas, AustinGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Joana F. Marques
    • 1
  • Hong-Lei Wang
    • 1
  • Glenn P. Svensson
    • 1
  • Enric Frago
    • 2
  • Olle Anderbrant
    • 1
  1. 1.Department of BiologyLund UniversityLundSweden
  2. 2.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations