Evolutionary Ecology

, Volume 28, Issue 4, pp 751–774 | Cite as

Historical and ecological divergence among populations of Monttea chilensis (Plantaginaceae), an endemic endangered shrub bordering the Atacama Desert, Chile

  • Matías C. BaranzelliEmail author
  • Leigh A. Johnson
  • Andrea Cosacov
  • Alicia N. Sérsic
Original Paper


The coastal deserts of northern Chile show an important latitudinal gradient of aridity with more arid areas to the north of the Atacama Desert than to the south. Several plant species have disjunct distributions that correspond with the extremes of this latitudinal gradient. In this study, using genetic (chloroplast and nuclear DNA), morphological (vegetative and floral traits of various kinds) and climatic and topographic information, we explored ecological and historical events that have putatively shaped patterns of variation among Monttea chilensis populations—a species that shows this disjunct distribution. Through phylogeographic and phylogenetic analyses, two divergent lineages were identified located at the latitudinal extremes. The lineage located northern lineage (NG) of the Atacama Desert showed more genetic diversity and better-resolved phylogeographic structure than the southern lineage (SG). Considerable morphological variation across the geographical range corresponds with these genetic groups. We observed contrasting relationships between floral and vegetative traits: populations from the most arid region NG possessed larger flowers, but smaller vegetative values, and vice versa. Niche modelling and multivariate analyses, including environmental data, revealed different environmental requirements for each lineage. NG plants occur in regions with warmer and drier climatic conditions and at higher altitudes, while SG populations inhabit colder and more humid environments and lower altitudes. The evolutionary history of M. chilensis exhibits a phylogeographical footprint consistent with past fragmentation and allopatric differentiation, where the hyper-arid zone formed by the Atacama Desert clearly acted as an important gene flow barrier. This barrier has led to considerable differentiation in morphology and ecology, resulting in two ecotypes or geographical races, suggesting incipient speciation promoted by local adaptation and geographical isolation.


Aridization Ecological niche modelling Flower shape Flower colour Geographic variation Plant phylogeography Vicariance 



We thank CONAF for allowing us to carry out studies in protected areas of Chile and Andrea Cocucci for field assistance. A.C. and A.N.S. acknowledge the National Research Council of Argentina (CONICET) as researchers and M.C.B as a doctoral fellowship holder. Financial support was provided by CONICET (Nº1672), SeCyT-FONCyT (PICT-2011-0837), MINCyT-Cba (Nº000113/2011) SeCyT-UNC (Nº162/12) and Myndel Pedersen Foundation (to A.N.S.).

Supplementary material

10682_2014_9694_MOESM1_ESM.doc (40 kb)
Supplementary material 1 (DOC 40 kb)
10682_2014_9694_MOESM2_ESM.doc (3.2 mb)
Supplementary material 2 (DOC 3243 kb)
10682_2014_9694_MOESM3_ESM.docx (134 kb)
Supplementary material 3 (DOCX 134 kb)
10682_2014_9694_MOESM4_ESM.doc (38 kb)
Supplementary material 4 (DOC 37 kb)


  1. Albach DC, Meudt HM, Oxelman B (2005) Piecing together the “new” Plantaginaceae. Am J Bot 92:297–315PubMedCrossRefGoogle Scholar
  2. Alsos IG, Engelskjøn T, Gielly L, Taberlet P, Brochmann C (2005) Impact of ice ages on circumpolar molecular diversity: insights from an ecological key species. Mol Ecol 14:2739–2753PubMedCrossRefGoogle Scholar
  3. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  4. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  5. Bates D, Maechler M. (2010). lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-33.
  6. BIOTA (2010) Diseño y ejecución de un plan de preservación para la flora amenazada del Sitio Prioritario Sector Costero de Paposo. Ministerio del Medio Ambiente, SEREMI Región de Antofagasta. Antofagasta, Chile, Región de AntofagastaGoogle Scholar
  7. Cabrera AL, Willink A (1980) Biogeografia de America Latina. O.E.A. Serie de Biologia, Monografia 13. Ed. 2, corr. General Secretariat of the Organization of American States, Washington, DCGoogle Scholar
  8. Chalcoff VR, Ezcurra C, Aizen MA (2008) Uncoupled geographical variation between leaves and flowers in a south-andean proteaceae. Ann Bot 102:79–91PubMedCentralPubMedCrossRefGoogle Scholar
  9. Chittka L (1992) The colour hexagon: a chromaticity diagram based on excitations as a generalized representation of colour opponency. J Comp Physiol A 170:533–543Google Scholar
  10. Chittka L, Kevan PG (2005) Flower colour as advertisement. In: Dafni A, Kevan PG, Husband BC (eds) Practical pollination biology. Enviroquest Ltd., Cambridge, pp 157–196Google Scholar
  11. Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380CrossRefGoogle Scholar
  12. Cosacov A, Cocucci AA, Sérsic AN in press Geographical differentiation in floral traits along the distribution range of the Patagonian oil-producing Calceolaria polyrhiza: do pollinators matter? Ann. BotGoogle Scholar
  13. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772PubMedCrossRefGoogle Scholar
  14. Dillon MO, Tu T, Xie L, Quipuscoa-Silvestre V, Wen J (2009) Biogeographic diversification in Nolana (Solanaceae), a ubiquitous member of the Atacama and peruvian deserts along the western coast of South America. J Syst Evol 7:457–476CrossRefGoogle Scholar
  15. Domínguez-Domínguez O, Vázquez-Domínguez E (2009) Filogeografía: aplicaciones en taxonomía y conservación. Anim Biodivers Conserv 32:59–70Google Scholar
  16. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15Google Scholar
  17. Drummond AJ, Rambaut A (2007) BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCentralPubMedCrossRefGoogle Scholar
  18. Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581PubMedCrossRefGoogle Scholar
  19. Excoffier L, Lischer HEL (2010) Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567Google Scholar
  20. Finger K, Teillier S (2010) Contribución al conocimiento de la flora endémica de Taltal y Paposo, Región de Antofagasta (II), Chile. Chloris Chilensis 13. Nº 2. URL:
  21. Fritz SC, Baker PA, Lowenstein TK, Seltzer GO, Rigsby CA, Dwyer GS, Tapia PM, Kimberly KK, Teh-Lung K, Luo S (2004) Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quat Res 61:95–104CrossRefGoogle Scholar
  22. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedCentralPubMedGoogle Scholar
  23. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML online a web server for fast maximum likeli-hood-based phylogenetic inference. Nucleic Acids Res 33:557–559CrossRefGoogle Scholar
  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser 41:95–98Google Scholar
  25. Hartley AJ, Chong G (2002) Late pliocene age for the Atacama Desert: implications for the desertification of western South America. Geology 30:43–46CrossRefGoogle Scholar
  26. Herrera J (2005) Flower size variation in Rosmarinus officinalis: individuals, populations and habitats. Ann Bot 95:431–437PubMedCrossRefGoogle Scholar
  27. Herrera J (2009) Visibility versus biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants. Ann Bot 103:1119–1127PubMedCentralPubMedCrossRefGoogle Scholar
  28. Hickerson MJ, Carstens BC, Cavender-Bares J, Crandall KA, Graham CH, Johnson JB, Rissler L, Victoriano PF, Yoder AD (2010) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Mol Phyl Evol 54:291–301CrossRefGoogle Scholar
  29. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  30. Hoorn C, Wesselingh FP, ter Steege H et al (2010) Amazonia through time: Andean uplift, climate change, landscape evolution and biodiversity. Science 330:927–993PubMedCrossRefGoogle Scholar
  31. Huelsenbeck JP, Ronquist F (2001) MrBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755PubMedCrossRefGoogle Scholar
  32. Johnston IM (1929) Papers on the Flora of Northern Chile.1. The Coastal Flora of the Departments of Chañaral and Taltal. The Gray Herb. Harvard University. CambridgeGoogle Scholar
  33. Klingenberg CP (2011) MORPHOJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357PubMedCrossRefGoogle Scholar
  34. Lambrecht SC, Dawson TE (2007) Correlated variation of floral and leaf traits along a moisture availability gradient. Oecologia 151:574–583PubMedCrossRefGoogle Scholar
  35. Luebert F, Wen J (2008) Phylogenetic analysis and evolutionary diversification of Heliotropium sect. Cochranea (Heliotropiaceae) in the Atacama Desert. Syst Bot 33:390–402CrossRefGoogle Scholar
  36. Luebert F, Wen J, Dillon O (2009) Systematic placement and biogeographical relationships of the monotypic genera Gypothamnium and Oxyphyllum (Asteraceae: mutisioideae) from the Atacama Desert. Bot J Linean Soc 159:32–51CrossRefGoogle Scholar
  37. Méndez MA, Soto ER, Correa C, Veloso A, Vergara E, Sallaberry M, Iturra P (2004) Morphological and genetic differentiation among Chilean populations of Bufo spinulosus (Anura: Bufonidae). Rev Chi Hist Nat 77:559–567Google Scholar
  38. Moreira-Muñoz A (2011) Plant geography of Chile. Plant and vegetation series. In: M.J.A. Werger (ed.) Vol. 5, pp. 3–45. Springer, BerlinGoogle Scholar
  39. Nakazato T, Warren DL, Moyle LC (2010) Ecological and geographic modes of species divergence in wild tomatoes. Am J Bot 97:680–693PubMedCrossRefGoogle Scholar
  40. Ossa PG, Perez F, Arnesto JJ (2013) Phylogeography of two closely related species of Nolana from the coastal Atacama Desert of Chile: post-glacial population expansions in response to climate fluctuations. J Biogeogr 40:2191–2203CrossRefGoogle Scholar
  41. Palma RE, Marquet PA, Boric-Bargetto D (2005) Inter- and intraspecific phylogeography of small mammals in the Atacama Desert and adjacent areas of northern Chile. J Biogeogr 32:1931–1941CrossRefGoogle Scholar
  42. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  43. Pinto R, Barría I, Marquet PA (2006) Geographical distribution of Tillandsia lomas in the Atacama Desert, northern Chile. J Arid Environ 65:543–552CrossRefGoogle Scholar
  44. Placzek C, Quade J, Betancourt JL, Patchett PJ, Rech JA, Latorre C, Matmon A, Holmgren C, English NB (2009) Climate in the dry central Andes over geologic, millennial, and interannual timescales. Ann Mo Bot Gard 96:386–397CrossRefGoogle Scholar
  45. R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL
  46. Rambaut A, Drummond AJ (2009) Tracer v1.5.0. Available at:
  47. Ramos VA, Ghiglione MC (2008) Tectonic evolution of the Patagonian Andes. The late Cenozoic of Patagonia and Tierra del Fuego. In: J. Rabassa (ed.), pp. 205–226. Elsevier, OxfordGoogle Scholar
  48. Rodríguez-Gómez F, Gutíerrez-Rodríguez C, Ornelas JF (2013) Genetic, phenotypic and ecological divergence with gene flow at the Isthmus of Tehuantepec: the case of the azure-crowned hummingbird (Amazilia cyanocephala). J Biogeogr 40:1360–1373CrossRefGoogle Scholar
  49. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  50. Rønsted N, Chase MW, Albach DC, Bello MA (2002) Phylogenetic relationships within Plantago (Plantaginaceae): evidence from nuclear ribosomal ITS and plastid trnL-F sequence data. Bot J Linn Soc 139:323–338CrossRefGoogle Scholar
  51. Rozas J, Sánchez-Del Barrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  52. Rundel PW, Dillon MO, Palma B, Mooney HA, Gulmon SL, Ehleringer JR (1991) The phytogeography and ecology of the coastal Atacama and Peruvian deserts. Aliso 13:1–49Google Scholar
  53. Schmidt-Jabaily R, Sytsma KJ (2010) Phylogenetics of Puya (Bromeliaceae): placement, major lineages, and evolution of chilean species. Am J Bot 97:337–356CrossRefGoogle Scholar
  54. Seipold L (2004) Blütenöle: chemische analyse, biosynthese und betrachtungen zur Entstehung von Ölblumen. Tesis de Martin-Luther-Universität Halle-Wittenberg. Halle (Saale) 1–103:A1–A13Google Scholar
  55. Serra MT, Gajardo R, Cabello A (1986) Monttea chilensis. Programa de protección y recuperación de la Flora nativa de Chile. Ficha Técnica de especies amenazadas. Corporación Nacional Forestal.SantiagoGoogle Scholar
  56. Sérsic AN, Cocucci AA (1999) An unusual kind of nectary in the oil flowers of Monttea: its structure and function. Flora 194:393–404Google Scholar
  57. Sérsic A, Baranzelli MC, Cosacov A, Ferreiro G, Paiaro V, Cocucci A (2013) Variation of floral traits across a geographical framework of pollinator assemblages differing in functional, morphological and ethological features. XXXIX Annual Conference of South African Association of BotanistsGoogle Scholar
  58. Shaw J, Lickey EB, Beck JT, Farmer SB, Liu WS, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare. II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166PubMedCrossRefGoogle Scholar
  59. Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetics studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288PubMedCrossRefGoogle Scholar
  60. Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381PubMedCrossRefGoogle Scholar
  61. Simpson BB, Tate JA, Weeks A (2005) The biogeography of Hoffmannseggia (Leguminosae, Caesalpinioideae, Caesalpinieae): a tale of many travels. J Biogeogr 32:15–27CrossRefGoogle Scholar
  62. Squeo FA, Arancio G, Gutiérrez JR (2001) Libro rojo de la flora nativa de la región de Coquimbo y de los sitios prioritarios para su conservación. Ediciones de la Universidad de La Serena, La Serena 388 ppGoogle Scholar
  63. Tajima F (1989) The effet of change in populaiton size on DNA polymorphism. Genetics 123:598–601Google Scholar
  64. Thompson PJ, Hodgson K (1999) Specific leaf area and leaf dry matter content as alternative predictors of plantstrategies. New Phytol 143:155–162CrossRefGoogle Scholar
  65. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 24:4876–4882CrossRefGoogle Scholar
  66. Viruel J, Segarra-Moragues JG, Pérez-Collazos E, Villar L, Catalán P (2010) Systematic revision of the Epipetrum group of Dioscorea (Dioscoreaceae) endemic to Chile. Syst Bot 35:40–63CrossRefGoogle Scholar
  67. Viruel J, Catalán P, Segarra-Moragues JG (2012) Disrupted phylogeographical microsatellite and chloroplast DNA patterns indicate a vicariance rather than long-distance dispersal origin for the disjunct distribution of the chilean endemic Dioscorea biloba (Dioscoreaceae) around the Atacama Desert. J Biogeogr 39:1073–1085CrossRefGoogle Scholar
  68. Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric Morphometrics for biologists. A primer. Elsevier, LondonGoogle Scholar
  69. Zuur AF, Leno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Matías C. Baranzelli
    • 1
    Email author
  • Leigh A. Johnson
    • 2
  • Andrea Cosacov
    • 1
  • Alicia N. Sérsic
    • 1
  1. 1.Laboratorio de Ecología Evolutiva – Biología Floral, Instituto Multidisciplinario de Biología Vegetal (IMBIV)CONICET-Universidad Nacional de CórdobaCórdobaArgentina
  2. 2.Department of Biology and M. L. Bean Life Science MuseumBrigham Young UniversityProvoUSA

Personalised recommendations