Advertisement

Evolutionary Ecology

, Volume 28, Issue 3, pp 471–493 | Cite as

Is cold hardiness size-constrained? A comparative approach in land snails

  • Armelle AnsartEmail author
  • Annie Guiller
  • Olivier Moine
  • Marie-Claire Martin
  • Luc Madec
Original Paper

Abstract

Body water is a major element of the cold-hardiness strategies observed in ectothermic animals, in particular in freezing avoidant species for which body ice formation is lethal. Here, we investigate the relationships, in terrestrial snails, between the temperature of crystallisation (Tc) and body water (water mass and water content), shell shape, geographic and climatic distribution, taking into account phylogenetic inertia. Phylogenetic relationships among 31 species from 13 different families of terrestrial Gastropods were studied using 28S rRNA nuclear and COI mitochondrial sequence data, together with species-specific traits. Our results provide evidence for clear relationships between Tc and absolute/relative body water: smaller species with lower water content tended to be characterized by colder temperatures of crystallisation, although some exceptions were noticeable. Environmental conditions do not appear to affect Tc significantly, as well as shell shape which is however correlated with water content. This study confirmed that supercooling ability in land snails is size-constrained, with consequences on cold-hardiness strategies.

Keywords

Terrestrial gastropods Temperature of crystallisation Body water Phylogenetic relationships PGLS 

Notes

Acknowledgments

We are thankful to Nicole Limondin-Lozouet and Olivier Gargominy for their help in species identification, to Yann Rantier for extraction of geographic information on species, to Philippe Vernon and anonymous referees for constructive comments and to all the people who collected snails for this study purpose, in particular Annegret Nicolai, Mathieu Daëron and Thomas Geslin. This work benefited from the ATBI (All Taxa Biodiversity Inventory) Mercantour program and was partly supported by MAPGEO project, funded by the INSU/INEE PALEO2 program of Centre National de la Recherche Scientifique (CNRS).

References

  1. Anker A, Baeza JA (2012) Molecular and morphological phylogeny of hooded shrimps, genera Betaeus and Betaeopsis (Decapoda, Alpheidae): testing the center of origin biogeographic model and evolution of life history traits. Mol Phylogenet Evol 64:401–415PubMedCrossRefGoogle Scholar
  2. Ansart A, Vernon P (2003) Cold hardiness in molluscs. Acta Oecol 24:95–102CrossRefGoogle Scholar
  3. Ansart A, Vernon P (2004) Cold hardiness abilities vary with the size of the land snail Cornu aspersum. Comp Biochem Physiol A 139:205–211CrossRefGoogle Scholar
  4. Ansart A, Vernon P, Daguzan J (2001) Photoperiod is the main cue that triggers supercooling ability in the land snail, Helix aspersa (Gastropoda: Helicidae). Cryobiology 42:266–273PubMedCrossRefGoogle Scholar
  5. Ansart A, Nicolai A, Vernon P et al (2010) Do ice nucleating agents limit the supercooling ability of the land snail Cornu aspersum? Cryoletters 31:329–340PubMedGoogle Scholar
  6. Bailey SER, Lazaridou-Dimitriadou M (1991) Inverse temperature acclimation of heart rate in hibernating land snails. J Comp Physiol B 160:677–681CrossRefGoogle Scholar
  7. Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994PubMedCrossRefGoogle Scholar
  8. Bale JS, Walters KFA (2001) Overwintering biology as a guide to the establishment potential of non-native arthropods in the UK. In: Atkinson D, Thorndyke M (eds) Environment and animal development: genes, life histories and plasticity. BIOS Scientific Publishers Ltd, Oxford, pp 343–354Google Scholar
  9. Bartoň K (2009) MuMIn: multi-model inference. Available from http://r-forge.r-project.org/projects/mumin/. Accessed Apr 2013
  10. Bigg EK (1953) The supercooling of water. Proc Phys Soc Lond B 66:688–694CrossRefGoogle Scholar
  11. Block W (2003) Water or ice?—the challenge for invertebrate cold survival. Sci Prog 86:77–101PubMedCrossRefGoogle Scholar
  12. Blomberg SP, Garland TJ, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717–745PubMedCrossRefGoogle Scholar
  13. Bouchet P, Rocroi J-P (2005) Classification and nomenclator of gastropod families. Malacologia 47:1–397Google Scholar
  14. Chown SL, Hoffmann AA, Kristensen TN et al (2010) Adapting to climate change: a perspective from evolutionary physiology. Clim Res 43:3–15CrossRefGoogle Scholar
  15. Costanzo JP, Moore JB, Lee RE et al (1997) Influence of soil hydric parameters on the winter cold hardiness of a burrowing beetle, Leptinotarsa decemlineata (Say). J Comp Physiol B 167:169–176CrossRefGoogle Scholar
  16. Costanzo JP, Litzgus JD, Iverson JB et al (1998) Soil hydric characteristics and environmental ice nuclei influence in supercooling capacity of hatchling painted turtles Chrysemys picta. J Exp Biol 201:3105–3112PubMedGoogle Scholar
  17. Cruz FB, Antenucci D, Luna F et al (2011) Energetics and Liolaemini lizards: implications of a small body size and ecological conservatism. J Comp Physiol B 181:373–382PubMedCrossRefGoogle Scholar
  18. David JF, Vannier G (1996) Changes in supercooling with body size, sex and season in the long-lived millipede Polyzonium germanicum (Diplopoda, Polzoniidae). J Zool Lond 240:599–608CrossRefGoogle Scholar
  19. Dayrat B, Tillier A, Lecointre G et al (2001) New clades of euthyneuran gastropods (mollusca) from 28S rRNA sequences. Mol Phyl Evol 19:225–235CrossRefGoogle Scholar
  20. Estoup A, Largiadèr CR, Perrot E et al (1996) Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol Mar Biol Biotechnol 5:295–298 Google Scholar
  21. Falkner G, Obrdlík P, Castella E, Speight MCD (2001) Shelled Gastropoda of Western Europe. Friedrich-Held-Gesellschaft, München, 267 ppGoogle Scholar
  22. Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–297PubMedGoogle Scholar
  23. Freckleton RP (2009) The seven deadly sins of comparative analysis. J Evol Biol 22:1367–1375PubMedCrossRefGoogle Scholar
  24. Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726PubMedCrossRefGoogle Scholar
  25. Gargominy O, Neubert E (2011) Identifier les Clausilies de France. MalaCo HS1:109–122Google Scholar
  26. Gargominy O, Ripken TEJ (2011) Une collection de référence pour la malacofaune terrestre de France. MalaCo HS1:1–108Google Scholar
  27. Goodfriend GA (1983) Clinal variation and natural selection in the land snail Pleurodonte lucerna in western St. Ann Parish, Jamaica. PhD Dissertation, University of FloridaGoogle Scholar
  28. Goodfriend GA (1986) Variation in land-snail shell form and size and its causes: a review. Syst Zool 35:204–223CrossRefGoogle Scholar
  29. Grafen A (1989) The phylogenetic regression. Philos Trans R Soc Lond B 326:119–157CrossRefGoogle Scholar
  30. Grenot CJ, Garcin L, Dao J et al (2000) How does the European common lizard, Lacerta vivipara, survive the cold of winter? Comp Biochem Physiol A 127:71–80CrossRefGoogle Scholar
  31. Guiller A, Coutellec M-A, Madec L et al (2001) Evolutionary history of the land snail Helix aspersa in western Mediterranean: preliminary results inferred from mitochondrial DNA sequences. Mol Ecol 10:81–87PubMedCrossRefGoogle Scholar
  32. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  33. Harmon LJ, Weir JT, Brock CD et al (2008) GEIGER: investigating evolutionary radiations. Bioinformatics 24:129–131PubMedCrossRefGoogle Scholar
  34. Hausdorf B (2003) Latitudinal and altitudinal body size variation among north-west European land snail species. Global Ecol Biogeogr 12:389–394CrossRefGoogle Scholar
  35. Jensen D, Overgaard J, Sorensen JG (2007) The influence of developmental stage on cold shock resistance and ability to cold-harden in Drosophila melanogaster. J Insect Physiol 53:179–186PubMedCrossRefGoogle Scholar
  36. Jing XH, Kang L (2003) Geographical variation in egg cold hardiness: a study on the adaptation strategies of the migratory locust Locusta migratoria L. Ecol Entomol 28:151–158CrossRefGoogle Scholar
  37. Kellerman V, Loeschke V, Hoffmann AA et al (2012) Phylogenetic constraints in key, functional traits behind species’ climate niches: patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66:3377–3389CrossRefGoogle Scholar
  38. Kerney MP, Cameron RAD (1999) Guide des escargots et limaces d’Europe. Delachaux et Niestlé, LausanneGoogle Scholar
  39. Kerney MP, Cameron RAD, Jungbluth JH (1983) Die Landschnecken Nord- und Mitteleuropas. Parey, HamburgGoogle Scholar
  40. Klamkin MS (1971) Elementary approximations to the area of n-dimensional ellipsoids. Am Math Mon 78:280–283CrossRefGoogle Scholar
  41. Klamkin MS (1976) Corrections to “Elementary approximations to the area of n-dimensional ellipsoids”. Am Math Mon 83:478CrossRefGoogle Scholar
  42. Klein Tank AMG, Wijngaard JB, Können GP et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int J Clim 22:1441–1453CrossRefGoogle Scholar
  43. Koene JM, Schulenburg H (2005) Shooting darts: co-evolution and counter-adaptation in hermaphroditic snails. BMC Evol Biol 5:25. doi: 10.1186/1471-2148-5-25 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Kosnik ME, Jablonski D, Lockwood R et al (2006) Quantifying molluscan body size in evolutionary and ecological analyses: maximizing the return on data-collection efforts. Palaios 21:588–597CrossRefGoogle Scholar
  45. Koštál V, Rozsypal J, Pavel P et al (2013) Physiological and biochemical responses to cold and drought in the rock-dwelling pulmonate snail, Chondrina avenacea. J Comp Physiol B. doi: 10.1007/s00360-013-0749-0
  46. Kukal O, Duman JG (1989) Switch in the overwintering strategy of two insect species and latitudinal differences in cold hardiness. Can J Zool 67:825–827CrossRefGoogle Scholar
  47. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18Google Scholar
  48. Lee RE, Costanzo JP (1998) Biological ice nucleation and ice distribution in cold-hardy ectothermic animals. Ann Rev Physiol 60:55–72CrossRefGoogle Scholar
  49. Machin J (1967) Structural adaptations for reducing water-loss in three species of terrestrial snail. J Zool Lond 152:55–65CrossRefGoogle Scholar
  50. MacKenzie AP (1977) Non-equilibrium freezing behaviour of aqueous systems. Philos Trans R Soc Lond B 278:167–189CrossRefGoogle Scholar
  51. Moine O, Rousseau D–D, Jolly D et al (2002) Paleoclimatic reconstruction using mutual climatic range on terrestrial mollusks. Quat Res 57:162–172CrossRefGoogle Scholar
  52. Moran AL (2004) Egg size evolution in tropical American arcid bivalves: the comparative method and the fossil record. Evolution 58:2718–2733PubMedCrossRefGoogle Scholar
  53. Nicolai A, Vernon P, Lee M et al (2005) Supercooling ability in two populations of the land snail Helix pomatia (Gastropoda: Helicidae) and ice-nucleating activity of gut bacteria. Cryobiology 50:48–57PubMedCrossRefGoogle Scholar
  54. Nicolai A, Filser J, Lenz R et al (2011) Adjustment of metabolite composition in the haemolymph to seasonal variations in the land snail Helix pomatia. J Comp Physiol B 181:457–466PubMedGoogle Scholar
  55. Nunn CL (2011) The comparative approach in evolutionary anthropology and biology. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  56. Nyamukondiwa C, Terblanche JS, Marshall KE et al (2011) Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J Evol Biol 24:1927–1938PubMedCrossRefGoogle Scholar
  57. Nylander JAA (2004) MrAIC.pl. Program distributed by the author. Evol Biol Center, Uppsala University. http://www.abc.se/~nylander/mraic/mraic.html
  58. Orme CDL, Freckleton RP, Thomas GH et al (2012) CAPER: comparative analyses of phylogenetics and evolution in R. Available from http://cran.r-project.org/web/packages/caper/. Accessed Apr 2013
  59. Örstan A (2011) A method to measure snail shell volumes. Triton 23:31–32Google Scholar
  60. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884PubMedCrossRefGoogle Scholar
  61. Pakay JL, Withers PC, Hobbs AA et al (2002) In vivo downregulation of protein synthesis in the snail Helix aspersa during estivation. Am J Physiol Regul Integr Comp Physiol 283:197–204Google Scholar
  62. Pither J (2003) Climate tolerance and interspecific variation in geographic range size. Proc R Soc Lond B 270:475–481CrossRefGoogle Scholar
  63. Powell EN, Stanton RJJ (1985) Estimating biomass and energy flow of molluscs in palaeo-communities. Palaeontology 28:1–34Google Scholar
  64. Ramløv H (2000) Aspects of natural cold tolerance in ectothermic animals. Hum Reprod 15:24–26Google Scholar
  65. Raup DM, Graus RR (1972) General equations for volume and surface area of a logarithmically coiled shell. Math Geol 4:307–316CrossRefGoogle Scholar
  66. Revell LJ (2010) Phylogenetic signal and linear regression on species data. Methods Ecol Evol 1:319–329CrossRefGoogle Scholar
  67. Ronquist F, Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  68. Sinclair BJ, Marshall DJ, Singh S et al (2004) Cold tolerance of Littorinidae from southern Africa: intertidal snails are not constrained to freeze tolerance. J Comp Physiol B 174:617–624PubMedCrossRefGoogle Scholar
  69. Slotsbo S, Hansen LM, Jordaens K et al (2012) Cold tolerance and freeze-induced glucose accumulation in three terrestrial slugs. Comp Biochem Physiol A 161:443–449CrossRefGoogle Scholar
  70. Storey KB, Storey JM (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Quart Rev Biol 65:145–174PubMedCrossRefGoogle Scholar
  71. Storey KB, Storey JM (2004) Metabolic rate depression in animals: transcriptional and translational controls. Biol Rev 79:207–233PubMedCrossRefGoogle Scholar
  72. Storey KB, Storey JM, Churchill TA (2007) Freezing and anoxia tolerance of slugs: a metabolic perspective. J Comp Physiol B 177:833–840PubMedCrossRefGoogle Scholar
  73. Strachan LA, Tarnowski-Garner HE, Marshall KE et al (2011) The evolution of cold tolerance in Drosophila larvae. Physiol Biochem Zool 84:43–53PubMedCrossRefGoogle Scholar
  74. Vernon P, Vannier G, Luce JM (1997) Diminution de la capacité de surfusion au cours de l’embryogenèse et du développement larvaire chez un coléoptère. C R Acad Sci 320:359–366CrossRefGoogle Scholar
  75. Voituron Y, Barré H, Ramlov H et al (2009) Freeze tolerance evolution among anurans: frequency and time of appearance. Cryobiology 58:241–247PubMedCrossRefGoogle Scholar
  76. Wilson PW, Heneghan AF, Haymet ADJ (2003) Ice nucleation in nature: supercooling points (SCP) measurements and the role of heterogeneous nucleation. Cryobiology 46:88–98PubMedCrossRefGoogle Scholar
  77. Zachariassen KE, Kristiansen E (2000) Ice nucleation and antinucleation in nature. Cryobiology 41:257–279PubMedCrossRefGoogle Scholar
  78. Zachariassen KE, Kristiansen E, Pedersen SA et al (2004) Ice nucleation in solutions and freeze-avoiding insects—homogeneous or heterogeneous? Cryobiology 48:309–321PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Armelle Ansart
    • 1
    Email author
  • Annie Guiller
    • 2
  • Olivier Moine
    • 3
  • Marie-Claire Martin
    • 1
  • Luc Madec
    • 1
  1. 1.UMR 6553 EcobioUniversité de Rennes 1Rennes CedexFrance
  2. 2.UMR 6553 Ecobio, Laboratoire de Parasitologie PharmaceutiqueUniversité de Rennes 1Rennes CedexFrance
  3. 3.Laboratoire de Géographie PhysiqueUMR CNRS 8591Meudon CedexFrance

Personalised recommendations