Evolutionary Ecology

, Volume 27, Issue 4, pp 797–824 | Cite as

Population expansion, isolation and selection: novel insights on the evolution of color diversity in the strawberry poison frog

Original Paper

Abstract

The evolutionary mechanisms causing intraspecific diversity in aposematic color and pattern remain enigmatic. The strawberry poison frog (Oophaga pumilio) has diversified into a broad array of colors that span the visible spectrum. The most divergent phenotypes of O. pumilio are restricted to separate islands in the Bocas del Toro archipelago in western Panama, whereas throughout the majority of its range (from Nicaragua to western Panama) this species exhibits a single red phenotype. During the Holocene, sea-levels increased and changes in climate caused shifts in habitat through time. In the Bocas del Toro archipelago, rising sea-levels isolated previously connected populations in higher elevation habitats (forming islands). In this study we use historic measures of demography, ancestral distribution estimates, spatiotemporally explicit demographic models and genetic simulations to investigate the genetic consequences of the isolation due to sea-level changes and demographic processes mediated by recent climatic fluctuations. We then evaluate the role of these factors in the evolution of color in O. pumilio by measuring and comparing the deep coalescence of a neutrally evolving nuclear gene and a hypothetical autosomal coloration gene. Our results support a major role for recent population expansion and reduced gene flow (from isolation on islands) in the diversification of color across populations.

Keywords

Dendrobatidae Demography Color evolution Dynamic histories Natural selection Sexual selection 

Notes

Acknowledgments

We are indebted to M. Vences and S. Hauswaldt for their support and advice on this project. This material is based upon work supported by KAAD (Katholischer Akademischer Ausländer-Dienst) Ph. D scholarship (MCG) and by the National Science Foundation Grant No. 0905905 (JLB).

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723CrossRefGoogle Scholar
  2. Andersen KK, Azuma N, Barnola JM et al (2004) High resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431:147–151Google Scholar
  3. Anderson RP, Handley CO (2002) Dwarfism in insular sloths: biogeography, selection, and evolutionary rate. Evolution 56(5):1045–1058PubMedGoogle Scholar
  4. Arenas M, Ray N, Currat M, Excoffier L (2012) Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 29(1):207–218PubMedCrossRefGoogle Scholar
  5. Bee MA (2003) A test of the ‘dear enemy effect’ in the strawberry dart-poison frog (Dendrobates pumilio). Behav Ecol Sociobiol 54:601–610CrossRefGoogle Scholar
  6. Bielejec F, Rambaut A, Suchard MA, Lemey P (2011) SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 27:2910–2912PubMedCrossRefGoogle Scholar
  7. Braconnot P, Otto-Bliesner B, Harrison S et al (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum–Part 1: experiments and large-scale features. Clim Past 3:261–277CrossRefGoogle Scholar
  8. Brown JL, Knowles LL (2012) Spatially explicit models of dynamic histories: examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika. Mol Ecol 21(15):3757–3775PubMedCrossRefGoogle Scholar
  9. Brown JL, Maan ME, Cummings ME, Summers K (2010) Evidence for selection on coloration in a Panamanian poison frog: a coalescent-based approach. J Biogeogr 37(5):891–901CrossRefGoogle Scholar
  10. Brown JL, Twomey E, Amézquita A et al (2011) A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa 3083:1–120Google Scholar
  11. Brust DG (1993) Maternal brood care by Dendrobates pumilio: a frog that feeds its young. J Herpetol 27(1):96–98CrossRefGoogle Scholar
  12. Bunnell P (1973) Vocalizations in the territorial behavior of the frog Dendrobates pumilio. Copeia 1973(2):277–284CrossRefGoogle Scholar
  13. Coates AG, Obando JA (1996) The geologic evolution of the Central American Isthmus. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, IL, pp 21–56Google Scholar
  14. Coates AG, Collins LS, Aubry MP, Berggren WA (2004) The geology of the Darien, Panama, and the late Miocene–Pliocene collision of the Panama arc with northwestern South America. Geol Soc Am Bull 116:1327–1344CrossRefGoogle Scholar
  15. Colinvaux PA (1991) A commentary on: palaeoecological background: neotropics. Clim Change 19:49–51CrossRefGoogle Scholar
  16. Colinvaux PA, Liu K-B, de Oliveira P et al (1996) Temperature depression in the lowland tropics in glacial times. Clim Change 32:19–33CrossRefGoogle Scholar
  17. Currat M, Ray N, Excoffier L (2004) SPLATCHE: a program to simulate genetic diversity taking into account environmental heterogeneity. Mol Ecol Notes 4:139–142CrossRefGoogle Scholar
  18. Daly JW, Myers CW (1967) Toxicity in Panamanian poison frogs (Dendrobates): some biological and chemical aspects. Science 156:970–973PubMedCrossRefGoogle Scholar
  19. Darst CR, Cummings ME, Cannatella DC (2006) A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. Proc Natl Acad Sci USA 103:5852–5857PubMedCrossRefGoogle Scholar
  20. Darwin C (1887) The life and letters of Charles Darwin: including an autobiographical chapter, edited by his son Francis Darwin. Murray, LondonCrossRefGoogle Scholar
  21. Donnelly MA (1987) Territoriality in the poison-dart frog Dendrobates pumilio (Anura: Dendrobatidae). PhD dissertation, University of MiamiGoogle Scholar
  22. Donnelly MA (1989) Demographic effects of reproductive resource supplementation in a Territorial Frog, Dendrobates pumilio. Ecol Monogr 59(3):207–221CrossRefGoogle Scholar
  23. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCrossRefGoogle Scholar
  24. Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192PubMedCrossRefGoogle Scholar
  25. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973PubMedCrossRefGoogle Scholar
  26. Dumont BL, Payseur BA (2008) Evolution of the genomic rate of recombination in mammals. Evolution 62:276–294PubMedCrossRefGoogle Scholar
  27. Edmonds CA, Lillie AS, Cavalli-Sforza LL (2004) Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci USA 101:975–979PubMedCrossRefGoogle Scholar
  28. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  29. Excoffier L, Novembre J, Schneider S (2000) SIMCOAL: a general coalescent program for the simulation of molecular data in interconnected populations with arbitrary demography. J Hered 91:506–510PubMedCrossRefGoogle Scholar
  30. Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Annu Rev Ecol Evol Syst 40:481–501CrossRefGoogle Scholar
  31. Fleming K, Johnston P, Zwartz D et al (1998) Refining the eustatic sea-level curve since the Last Glacial Maximum using far- and intermediate-field sites. Earth Planet Sci Lett 163(1–4):327–342CrossRefGoogle Scholar
  32. Galbreath KE, Hafner DJ, Zamudio K (2009) When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American Pika, Ochotona princeps). Evolution 63:2848–2863PubMedCrossRefGoogle Scholar
  33. GIBCO (2012) GEBCO digital atlas on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as part of the general bathymetric chart of the oceans. British Oceanographic Data Centre, Liverpool, UKGoogle Scholar
  34. Graham CH, van der Wal J, Phillips SJ, Moritz C, Williams SE (2010) Dynamic refugia and species persistence: tracking spatial shifts in habitat through time. Ecography 33:1062–1069CrossRefGoogle Scholar
  35. Grant T, Frost DR, Caldwell JP et al (2006) Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull Am Mus Nat Hist 299:1–262CrossRefGoogle Scholar
  36. Grant WS, Liu M, Gao T, Yanagimoto T (2012) Limits of Bayesian skyline plot analysis of mtDNA sequences to infer historical demographies in Pacific herring (and other species). Mol Phylogenet Evol 65(1):203–212PubMedCrossRefGoogle Scholar
  37. Hagemann S, Pröhl H (2007) Mitochondrial paraphyly in a polymorphic poison frog species (Dendrobatidae; D. pumilio). Mol Phylogenet Evol 45:740–747PubMedCrossRefGoogle Scholar
  38. Hauswaldt JS, Ludewig A-K, Vences M, Pröhl H (2010) Widespread co-occurrence of divergent mitochondrial haplotype lineages in a Central American species of poison frog (Oophaga pumilio). J Biogeogr 38:711–726CrossRefGoogle Scholar
  39. Hegna R, Saporito RA, Donnelly MA (2012) Not all colors are equal: predation and color polytpism in the aposematic poison frog Oophaga pumilio. Evol Ecol. doi:10.1007/s10682-012-9605-z
  40. Hewitt GM (1996) Some genetic consequences of iceages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Google Scholar
  41. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  42. Ho SY, Phillips MJ, Cooper A, Drummond AJ (2005) Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Mol Biol Evol 22:1561–1568PubMedCrossRefGoogle Scholar
  43. Ho SY, Lanfear R, Bromham L, Phillips MJ, Soubrier J, Rodrigo AG, Cooper A (2011) Time-dependent rates of molecular evolution. Mol Ecol 20:3087–3101PubMedCrossRefGoogle Scholar
  44. Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23:482–490PubMedCrossRefGoogle Scholar
  45. Lemey P, Rambaut A, Welch JJ, Suchard MA (2010) Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol 27:1877–1885PubMedCrossRefGoogle Scholar
  46. Limerick S (1980) Courtship behavior and oviposition of the poison-arrow frog Dendrobates pumilio. Herpetologica 36(1):69–71Google Scholar
  47. Lohse K, James N, Stone GN (2011) Inferring the colonization of a mountain range-refugia vs. nunatak survival in high alpine ground beetles. Mol Ecol 20:394–408PubMedCrossRefGoogle Scholar
  48. Maan ME, Cummings ME (2008) Female preferences for aposematic signal components in a polymorphic poison frog. Evolution 62(9):2334–2345PubMedCrossRefGoogle Scholar
  49. Maan ME, Cummings ME (2009) Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proc Natl Acad Sci USA 106:19072–19077PubMedCrossRefGoogle Scholar
  50. Maan ME, Cummings ME (2012) Poison frog colors are honest signals of toxicity, particularly for bird predators. Am Nat 179(1):1–14CrossRefGoogle Scholar
  51. Maddison DR, Maddison WP (2005) MacClade 4: analysis of phylogeny and character evolution. Version 4.08a. http://macclade.org
  52. Meuche I, Linsenmair KE, Pröhl H (2012) Intrasexual competition, territoriality and acoustic communication in male strawberry poison frogs (Oophaga pumilio). Behav Ecol Sociobiol 4:613–621CrossRefGoogle Scholar
  53. Milne GA, Long AJ, Bassett SE (2005) Modelling Holocene relative sea-level observations from the Caribbean and South America. Quat Sci Rev 24(10–11):1183–1202CrossRefGoogle Scholar
  54. Morgan K, O’ Loughlin S, Chen B et al (2011) Comparative phylogeography reveals a shared impact of Pleistocene environmental change in shaping genetic diversity within nine Anopheles mosquito species across the Indo-Burma biodiversity hotspot. Mol Ecol 20:4533–4549PubMedCrossRefGoogle Scholar
  55. Müller F (1879) Ituna and Thyridia; a remarkable case of mimicry in butterflies (R. Meldola translation). Proc R Entomol Soc 1879:20–29Google Scholar
  56. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  57. Piperno DR, Pearsall DM (1998) The origins of agriculture in the lowland Neotropics. Academic Press, San DiegoGoogle Scholar
  58. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  59. Poulton EB (1890) The colours of animals: their meaning and use especially considered in the case of insects. Kegan Paul, Trench, Trubner and Co. Ltd., LondonGoogle Scholar
  60. Pröhl H (1997) Territorial behavior of the strawberry poison-dart frog, Dendrobates pumilio. Amphib Reptil 18:437–442CrossRefGoogle Scholar
  61. Pröhl H, Berke O (2001) Spatial distributions of male and female strawberry poison frogs and their relation to female reproductive resources. Oecol 129:534–542Google Scholar
  62. Pröhl H, Hödl W (1999) Parental investment, potential reproductive rates and mating system in the strawberry poison-dart frog Dendrobates pumilio. Behav Ecol Sociobiol 46:215–220CrossRefGoogle Scholar
  63. Pröhl H, Ostrowski T (2011) Behavioural elements reflect phenotypic colour divergence in a poison frog. Evol Ecol 25(5):993–1015CrossRefGoogle Scholar
  64. Pröhl H, Hagemann S, Karsch J, Hobel G (2007) Geographic variation in male sexual signals in strawberry poison frogs (Dendrobates pumilio). Ethology 113(9):825–837CrossRefGoogle Scholar
  65. Rambaut A, Drummond AJ (2009) Tracer v1.5. Available at http://beast.bio.ed.ac.uk/Tracer
  66. Ray N, Currat M, Foll M, Excoffier L (2010) SPLATCHE2: a spatially explicit simulation framework for complex demography, genetic admixture and recombination. Bioinformatics 26:2993–2994PubMedCrossRefGoogle Scholar
  67. Reynolds RG, Fitzpatrick BM (2007) Assortative mating in poison-dart frogs based on an ecologically important trait. Evolution 61:2253–2259PubMedCrossRefGoogle Scholar
  68. Richards-Zawacki CL, Cummings ME (2011) Intraspecific reproductive character displacement in a polymorphic poison dart frog, Dendrobates pumilio. Evolution 65:259–267PubMedCrossRefGoogle Scholar
  69. Richards-Zawacki CL, Wang IJ, Summers KS (2012) Mate choice and the genetic basis for colour variation in a polymorphic dart frog: inferences from a wild pedigree. Mol Ecol 21:3879–3892PubMedCrossRefGoogle Scholar
  70. Rudh A, Rogell B, Höglund J (2007) Non-gradual variation in colour morphs of the Strawberry Poison Frog Dendrobates pumilio: genetic and geographical isolation suggest a role for selection in maintaining polymorphism. Mol Ecol 16:4284–4294PubMedCrossRefGoogle Scholar
  71. Rudh A, Rogell B, Håstad O, Qvarnström A (2011) Rapid population divergence linked with co-variation between coloration and sexual display in strawberry poison frogs. Evolution 65(5):1271–1282PubMedCrossRefGoogle Scholar
  72. Santos JC, Coloma LA, Summers K et al (2009) Amazonian amphibian diversity is primarily derived from late Miocene Andean lineages. PLoS Biol 7:448–461CrossRefGoogle Scholar
  73. Saporito R, Donnelly M, Garraffo H et al (2006) Geographic and seasonal variation in alkaloid-based chemical defenses of Dendrobates pumilio from Bocas del Toro, Panama. J Chem Ecol 32(4):795–814PubMedCrossRefGoogle Scholar
  74. Saporito RA, Donnelly MA, Jain P et al (2007) Spatial and temporal patterns of alkaloid variation in the poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon 50:757–778PubMedCrossRefGoogle Scholar
  75. Savage JM (2002) The amphibians and reptiles of Costa Rica: a herpetofauna between two continents, between two seas. University of Chicago Press, ChicagoGoogle Scholar
  76. Slatkin M, Maddison WP (1989) A cladistic measure of gene flow inferred from phylogenies of alleles. Genetics 123:603–613PubMedGoogle Scholar
  77. Staudt K, Ospina SM, Mebs D, Pröhl H (2010) Foraging behaviour and territoriality of the strawberry poison frog (Oophaga pumilio) in dependence of the presence of ants. Amphib Reptil 31(2):217–227CrossRefGoogle Scholar
  78. Summers K, Earn D (1999) The cost of polygyny and the evolution of female care in poison frogs. Biol J Linn Soc 66:515–538CrossRefGoogle Scholar
  79. Summers K, Bermingham E, Weight L et al (1997) Phenotypic and genetic divergence in three species of dart-poison frogs with contrasting parental behavior. J Hered 88(1):8–13PubMedCrossRefGoogle Scholar
  80. Summers K, Symula R, Clough M, Cronin T (1999) Visual mate choice in poison frogs. Proc Roy B Biol Sci 266:2141–2145CrossRefGoogle Scholar
  81. Summers K, Cronin TW, Kennedy T (2003) Variation in spectral reflectance among populations of Dendrobates pumilio, the strawberry poison frog, in the Bocas del Toro Archipelago, Panama. J Biogeogr 30:35–53CrossRefGoogle Scholar
  82. Summers K, Cronin TW, Kennedy T (2004) Cross-breeding of distinct color morphs of the strawberry poison frog (Dendrobates pumilio) from the Bocas del Toro Archipelago, Panama. J Herpet 38(1):1–8CrossRefGoogle Scholar
  83. Symula R, Schulte R, Summers K (2001) Molecular phylogenetic evidence for a mimetic radiation in Peruvian poison frogs supports a Müllerian mimicry hypothesis. Proc Roy B Biol Sci 268:2405–2421Google Scholar
  84. Tazzyman SJ, Iwasa Y (2010) Sexual selection can increase the effect of random genetic drift—a quantitative genetic model of polymorphism in Oophaga pumilio, the strawberry poison dart frog. Evolution 64(6):1719–1728PubMedCrossRefGoogle Scholar
  85. Voje KL, Hemp C, Flagstad Ø, Saetre GP, Stenseth NC (2009) Climatic change as an engine for speciation in flightless Orthoptera species inhabiting African mountains. Mol Ecol 18:93–108PubMedGoogle Scholar
  86. Wallace AR (1867) Proc Entomol Soc Lond. March 4th: IXXX–IXXXiGoogle Scholar
  87. Wang IJ (2011) Inversely related aposematic traits: reduced conspicuousness evolves with increased toxicity in a polymorphic poison-dart frog. Evolution 65:1637–1649PubMedCrossRefGoogle Scholar
  88. Wang IJ, Shaffer HB (2008) Rapid color evolution in an aposematic species: a phylogenetic analysis of color variation in the strikingly polymorphic strawberry poison-dart frog. Evolution 62:2742–2759PubMedCrossRefGoogle Scholar
  89. Wang IJ, Summers K (2010) Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol Ecol 19(3):447–458PubMedCrossRefGoogle Scholar
  90. Weygoldt P (1980) Complex brood care and reproductive behaviour in captive poison-arrow frogs, Dendrobates pumilio O. Schmidt. Behav Ecol Sociobiol 7(4):329–332CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Evolutionary Biology, Zoological InstituteTechnical University of BraunschweigBraunschweigGermany
  2. 2.Department of BiologyEast Carolina UniversityGreenvilleUSA
  3. 3.Department of BiologyDuke UniversityDurhamUSA

Personalised recommendations