Evolutionary Ecology

, Volume 26, Issue 6, pp 1311–1329 | Cite as

Intraspecific hybridization, life history strategies and potential invasion success in a parasitoid wasp

  • Chiara Benvenuto
  • Sandrine Cheyppe-Buchmann
  • Gérald Bermond
  • Nicolas Ris
  • Xavier Fauvergue
Original Paper

Abstract

Classical biological control—the introduction of exotic species to permanently control pests—offers an applied framework to test ecological and evolutionary hypotheses derived from invasion biology. One such hypothesis is that intraspecific hybridization can facilitate invasions because hybrids express higher phenotypic mean and/or variance than their parents. We tested this hypothesis using the parasitoid wasp Psyttalia lounsburyi, a candidate biocontrol agent for the olive fly Bactrocera oleae. Under laboratory conditions, we found marked differentiations between two populations of wasps, from South Africa and Kenya, in terms of life history strategies. South African females were better reproducers than Kenyan females, but the opposite was observed for males. Reaction norms showed different effects of developmental temperature on fecundity depending on the genotype. However, neither heterosis nor hybrid breakdown were observed. Hence, in this system, sex-specific effects of hybridization and genotype-by-environment interactions jeopardize any straightforward prediction on the fitness of hybrids. Therefore, our paper contributes to tone down the hybrid advantage hypothesis in invasion biology.

Keywords

Hybridization Classical biological control Cyto-nuclear effect Genotype-by-environment interaction Heterosis Variance Reaction norms 

Notes

Acknowledgments

We would like to thank Benoît Facon, Thomas Guillemaud, and Ruth Hufbauer for helpful comments on the manuscript as well as Marcel Thaon for providing biological material. This study was partially funded by the Agence Nationale de la Recherche (project BioInv4I, ANR-06-BDIV-008-01).

References

  1. Anderson E, Stebbins GL (1954) Hybridization as an evolutionary stimulus. Evolution 8:378–388CrossRefGoogle Scholar
  2. Antolin MF (1999) A genetic perspective on mating systems and sex ratios of parasitoid wasps. Res Popul Ecol 41:29–37CrossRefGoogle Scholar
  3. Arnold ML, Hodges SA (1995) Are natural hybrids fit or unfit relative to their parents? Trends Ecol Evol 10:67–71PubMedCrossRefGoogle Scholar
  4. Arnold ML, Martin NH (2010) Hybrid fitness across time and habitats. Trends Ecol Evol 25:530–536PubMedCrossRefGoogle Scholar
  5. Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568PubMedCrossRefGoogle Scholar
  6. Bon MC, Jones W, Hurard C, Loiseau A, Ris N, Pickett C, Estoup A, Fauvergue X (2008) Identification of 21 polymorphic microsatellites in the African parasitoid wasp, Psyttalia lounsburyi (Silvestri) (Hymenoptera: Braconidae). Mol Ecol Resour 8:930–932PubMedCrossRefGoogle Scholar
  7. Bordenstein SR, Werren JH (2007) Bidirectional incompatibility among divergent Wolbachia and incompatibility level differences among closely related Wolbachia in Nasonia. Heredity 99:278–287PubMedCrossRefGoogle Scholar
  8. Bordenstein SR, O’Hara FP, Werren JH (2001) Wolbachia-induced incompatibility precedes other hybrid incompatibilities in Nasonia. Nature 409:707–710PubMedCrossRefGoogle Scholar
  9. Bousset L, Henry PY, Sourrouille P, Jarne P (2004) Population biology of the invasive freshwater snail Physa acuta approached through genetic markers, ecological characterization and demography. Mol Ecol 13:2023–2036PubMedCrossRefGoogle Scholar
  10. Breeuwer JAJ, Werren JH (1995) Hybrid breakdown between two haplodiploid species: the role of nuclear and cytoplasmic genes. Evolution 49:705–717CrossRefGoogle Scholar
  11. Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52PubMedCrossRefGoogle Scholar
  12. Campbell DR, Waser NM (2001) Genotype-by-environment interaction and the fitness of plant hybrids in the wild. Evolution 55:669–676PubMedCrossRefGoogle Scholar
  13. Cheyppe-Buchmann S, Bon MC, Warot S, Walker J, Malausa T, Fauvergue X, Ris N (2011) Molecular characterization Psyttalia lounsburyi, a candidate biocontrol agent of the olive fly, and its Wolbachia symbionts as a pre-requisite for future intraspecific hybridization. Biocontrol 56:713–724CrossRefGoogle Scholar
  14. Ciosi M, Miller NJ, Kim KS, Giordano R, Estoup A, Guillemaud T (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol 17:3614–3627PubMedCrossRefGoogle Scholar
  15. Connallon T, Knowles LL (2006) Evidence for overdominant selection maintaining X-linked fitness variation in Drosophila melanogaster. Evolution 60:1445–1453PubMedGoogle Scholar
  16. Crawley MJ (1993) GLIM for ecologists. Blackwell Science Ltd, OxfordGoogle Scholar
  17. Culley TM, Hardiman NA (2009) The role of intraspecific hybridization in the evolution of invasiveness: a case study of the ornamental pear tree Pyrus calleryana. Biol Invasions 11:1107–1119CrossRefGoogle Scholar
  18. Daane KM, Sime KR, Wang XG, Nadel H, Johnson MW, Walton VM, Kirk A, Pickett CH (2008) Psyttalia lounsburyi (Hymenoptera: Braconidae), potential biological control agent for the olive fruit fly in California. Biol Control 44:79–89CrossRefGoogle Scholar
  19. Dowling DK, Abiega KC, Arnqvist G (2007) Temperature-specific outcomes of cytoplasmic-nuclear interactions on egg-to-adult development time in seed beetles. Evolution 61:194–201PubMedCrossRefGoogle Scholar
  20. Dowling DK, Friberg U, Lindell J (2008) Evolutionary implications of non-neutral mitochondrial genetic variation. Trends Ecol Evol 23:546–554PubMedCrossRefGoogle Scholar
  21. Edmands S (2002) Does parental divergence predict reproductive compatibility? Trends Ecol Evol 17:520–527CrossRefGoogle Scholar
  22. Ehler LE (1998) Invasion biology and biological control. Biol Control 13:127–133CrossRefGoogle Scholar
  23. Ellison CK, Burton RS (2010) Cytonuclear conflict in interpopulation hybrids: the role of RNA polymerase in mtDNA transcription and replication. J Evol Biol 23:528–538PubMedCrossRefGoogle Scholar
  24. Ellison CK, Niehuis O, Gadau J (2008) Hybrid breakdown and mitochondrial dysfunction in hybrids of Nasonia parasitoid wasps. J Evol Biol 21:1844–1851PubMedCrossRefGoogle Scholar
  25. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Natl Acad Sci USA 97:7043–7050PubMedCrossRefGoogle Scholar
  26. Facon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. J Evol Biol 18:524–535PubMedCrossRefGoogle Scholar
  27. Facon B, Pointier JP, Jarne P, Sarda V, David P (2008) High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr Biol 18:363–367PubMedCrossRefGoogle Scholar
  28. Fagan WF, Lewis MA, Neubert MG, van den Driessche P (2002) Invasion theory and biological control. Ecol Lett 5:148–157CrossRefGoogle Scholar
  29. Fauvergue X, Hopper KR (2009) French wasps in the new world: experimental biological control introductions reveal a demographic Allee effect. Popul Ecol 51:385–397CrossRefGoogle Scholar
  30. Fauvergue X, Malausa JC, Giuge L, Courchamp F (2007) Invading parasitoids suffer no Allee effect: a manipulative field experiment. Ecology 88:2392–2403PubMedCrossRefGoogle Scholar
  31. Frankham R (2005) Invasion biology—resolving the genetic paradox in invasive species. Heredity 94:385PubMedCrossRefGoogle Scholar
  32. Godfray HCJ (1994) Parasitoids. Behavioral and evolutionary ecology. Princeton University Press, PrincetonGoogle Scholar
  33. Grevstad FS (1999) Experimental invasions using biological control introductions: the influence of release size on the chance of population establishment. Biol Invasions 1:313–323CrossRefGoogle Scholar
  34. Guillemaud T, Beaumont MA, Ciosi M, Cornuet JM, Estoup A (2010) Inferring introduction routes of invasive species using approximate Bayesian computation on microsatellite data. Heredity 104:88–99PubMedCrossRefGoogle Scholar
  35. Hedrick PW, Parker JD (1997) Evolutionary genetics and genetic variation of haplodiploids and X-linked genes. Annu Rev Ecol Syst 28:55–83CrossRefGoogle Scholar
  36. Holm S (1979) A simple sequential rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  37. Hufbauer RA (2008) Biological invasions: paradox lost and paradise gained. Curr Biol 18:R246–R247PubMedCrossRefGoogle Scholar
  38. Hufbauer RA, Roderick GK (2005) Microevolution in biological control: mechanisms, patterns, and processes. Biol Control 35:227–239CrossRefGoogle Scholar
  39. Johansen-Morris AD, Latta RG (2006) Fitness consequences of hybridization between ecotypes of Avena barbata: Hybrid breakdown, hybrid vigor, and transgressive segregation. Evolution 60:1585–1595PubMedGoogle Scholar
  40. Keller SR, Taylor DR (2010) Genomic admixture increases fitness during a biological invasion. J Evol Biol 23:1720–1731PubMedCrossRefGoogle Scholar
  41. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204PubMedCrossRefGoogle Scholar
  42. Kolar CS, Lodge DM (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298:1233–1236PubMedCrossRefGoogle Scholar
  43. Kolbe JJ, Glor RE, Rodríguez Schettino L, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181PubMedCrossRefGoogle Scholar
  44. Krackow S, Meelis E, Hardy ICW (2002) Analysis of sex ratio variances and sequences of sex allocations. In: Hardy ICW (ed) Sex ratios—concepts and research methods. Cambridge University Press, Cambridge, pp 112–131CrossRefGoogle Scholar
  45. Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888PubMedCrossRefGoogle Scholar
  46. Legner EF (1988) Quantitation of heterotic behavior in parasitic Hymenoptera. Ann Entomol Soc Am 81:657–681Google Scholar
  47. Lexer C, Randell RA, Rieseberg LH (2003) Experimental hybridization as a tool for studying selection in the wild. Ecology 84:1688–1699CrossRefGoogle Scholar
  48. Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis and application. Blackwell, OxfordGoogle Scholar
  49. Malausa J-C, Blanchet A, Bon MC, Cheyppe-Buchmann S, Groussier-Bout G, Jones W, Pickett C, Ris N, Roche M, Thaon M, Fauvergue X (2010) Introduction of the African parasitoid Psyttalia lounsburyi in south of France for the classical biological control of Bactrocera oleae: will hybridization affect establishment and population growth? IOBC/WPRS Bull 53:49–55Google Scholar
  50. Marchetti MP, Moyle PB, Levine R (2004) Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecol Appl 14:587–596CrossRefGoogle Scholar
  51. Marsico TD, Burt JW, Espeland EK, Gilchrist GW, Jamieson MA, Lindstrom L, Roderick GK, Swope S, Szucs M, Tsutsui ND (2010) Underutilized resources for studying the evolution of invasive species during their introduction, establishment, and lag phases. Evol Appl 3:203–219CrossRefGoogle Scholar
  52. Memmott J, Craze PG, Harman HM, Syrett P, Fowler SV (2005) The effect of propagule size on the invasion of an alien insect. J Anim Ecol 74:50–62CrossRefGoogle Scholar
  53. Montgomery DC, Peck EA, Vining GG (2001) Introduction to linear regression analysis, 3rd edn. Wiley, New YorkGoogle Scholar
  54. Niehuis O, Judson AK, Gadau J (2008) Cytonuclear genic incompatibilities cause increased mortality in male F-2 hybrids of Nasonia giraulti and N. vitripennis. Genetics 178:413–426PubMedCrossRefGoogle Scholar
  55. Niehuis O, Gibson JD, Rosenberg MS, Pannebakker BA, Koevoets T, Judson AK, Desjardins CA, Kennedy K, Duggan D, Beukeboom LW, van de Zande L, Shuker DM, Werren JH, Gadau J (2010) Recombination and its impact on the genome of the haplodiploid parasitoid wasp Nasonia. PLoS ONE 5(1):e8597PubMedCrossRefGoogle Scholar
  56. O’Brien RG (1979) A general ANOVA method for robust tests of additive models for variances. J Am Stat Assoc 74:877–881CrossRefGoogle Scholar
  57. O’Brien RG (1981) A simple test for variance effects in experimental designs. Psychol Bull 89:570–574CrossRefGoogle Scholar
  58. Puth LM, Post DM (2005) Studying invasion: have we missed the boat? Ecol Lett 8:715–721CrossRefGoogle Scholar
  59. Quicke DLJ (1997) Parasitic wasps. Chapman and Hall, LondonGoogle Scholar
  60. Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: the genomics of cooperation. Trends Ecol Evol 19:645–653PubMedCrossRefGoogle Scholar
  61. Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372PubMedCrossRefGoogle Scholar
  62. Ris N, Allemand R, Fouillet P, Fleury F (2004) The joint effect of temperature and host species induce complex genotype-by-environment interactions in the larval parasitoid of Drosophila, Leptopilina heterotoma (Hymenoptera: Figitidae). Oikos 106:451–456CrossRefGoogle Scholar
  63. Roff D (1992) The evolution of life histories: theory and analysis. Chapman & Hall, New YorkGoogle Scholar
  64. Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc R Soc B-Biol Sci 273:2453–2459CrossRefGoogle Scholar
  65. Rosenthal DM, Ramakrishnan AP, Cruzan MB (2008) Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Mol Ecol 17:4657–4669PubMedCrossRefGoogle Scholar
  66. Rugman-Jones PF, Wharton R, van Noort T, Stouthamer R (2009) Molecular differentiation of the Psyttalia concolor (Szepligeti) species complex (Hymenoptera: Braconidae) associated with olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), in Africa. Biol Control 49:17–26CrossRefGoogle Scholar
  67. SAS Institute Inc. (1999) SAS/Stat User’s Guide, Version 9.1.3. SAS Institute, Cary, North Carolina.Google Scholar
  68. Sax DF, Brown JH (2000) The paradox of invasion. Glob Ecol Biogeogr 9:363–371CrossRefGoogle Scholar
  69. Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105CrossRefGoogle Scholar
  70. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  71. Stebbins GL (1959) The role of hybridization in evolution. Proc Am Phil Soc 103:231–251Google Scholar
  72. Stupar RM, Gardiner JM, Oldre AG, Haun WJ, Chandler VL, Springer NM (2008) Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biol 8:33. doi: 10.1186/1471-2229-8-33 PubMedCrossRefGoogle Scholar
  73. Thaon M, Blanchet A, Ris N (2009) Contribution à l’optimisation de l’élevage du parasitoïde Psyttalia lounsburyi. Cah Techn Inra 66:21–31Google Scholar
  74. Verhoeven KJF, Macel M, Wolfe LM, Biere A (2011) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc B-Biol Sci 278:2–8CrossRefGoogle Scholar
  75. Wolfe LM, Blair AC, Penna BM (2007) Does intraspecific hybridization contribute to the evolution of invasiveness?: an experimental test. Biol Invasions 9:515–521CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Chiara Benvenuto
    • 1
    • 3
  • Sandrine Cheyppe-Buchmann
    • 1
  • Gérald Bermond
    • 2
  • Nicolas Ris
    • 2
    • 4
  • Xavier Fauvergue
    • 1
  1. 1.Biology of Introduced PopulationsInstitute Sophia-Agrobiotech, (INRA–CNRS–UNS)Sophia-AntipolisFrance
  2. 2.Research and Development in Biological ControlInstitute Sophia-Agrobiotech, (INRA–CNRS–UNS)Sophia-AntipolisFrance
  3. 3.UCD School of Biology and Environmental ScienceUniversity College DublinBelfield, Dublin 4Ireland
  4. 4.Research and Development in Biological ControlCentre INRA PACASophia-AntipolisFrance

Personalised recommendations