Evolutionary Ecology

, Volume 26, Issue 2, pp 233–257 | Cite as

Division of labor and recurrent evolution of polymorphisms in a group of colonial animals

  • Scott LidgardEmail author
  • Michelle C. Carter
  • Matthew H. Dick
  • Dennis P. Gordon
  • Andrew N. Ostrovsky
Original Paper


Rendering developmental and ecological processes into macroevolutionary events and trends has proved to be a difficult undertaking, not least because processes and outcomes occur at different scales. Here we attempt to integrate comparative analyses that bear on this problem, drawing from a system that has seldom been used in this way: the co-occurrence of alternate phenotypes within genetic individuals, and repeated evolution of distinct categories of these phenotypes. In cheilostome bryozoans, zooid polymorphs (avicularia) and some skeletal structures (several frontal shield types and brood chambers) that evolved from polymorphs have arisen convergently at different times in evolutionary history, apparently reflecting evolvability inherent in modular organization of their colonial bodies. We suggest that division of labor evident in the morphology and functional capacity of polymorphs and other structural modules likely evolved, at least in part, in response to the persistent, diffuse selective influence of predation by small motile invertebrate epibionts.


Bryozoa Asexual growth Modularity Polymorphism Evolvability Predation 



J.B.C. Jackson provided inspiration and cajoling that extend well beyond this paper. M. Hopkins, Field Museum, Chicago, and L.K. Nyhart, University of Wisconsin, Madison, provided useful comments on the manuscript. J.G. Harmelin, Centre d’Océanologie de Marseille, Université de la Méditerranée, graciously supplied the images in Fig. 4. MCC acknowledges support from a PhD Commonwealth Scholarship, Victoria University of Wellington, and the National Institute of Water & Atmospheric Research, Wellington. ANO thanks FWF, Austria (grant P22696-B17) and the RFBR, Russia (grants 10-04-00085-a, 10-04-10089-к) for financial support. We are grateful to all.


  1. Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407PubMedCrossRefGoogle Scholar
  2. Beklemishev WN (1969) Principles of comparative anatomy of invertebrates, vol 1. Oliver and Boyd, EdinburghGoogle Scholar
  3. Berning B (2008) Evidence for sublethal predation and regeneration among living and fossil ascophoran bryozoans. In: Hageman SJ, Key MMJ Jr, Winston JE (eds) Bryozoan studies 2007, Virginia Museum of Natural History Special Publication 15. Virginia Museum of Natural History, Martinsville, pp 1–5Google Scholar
  4. Best MA, Thorpe JP (1985) Autoradiographic study of feeding and the colonial transport of metabolites in the marine bryozoan Membranipora membranacea. Mar Biol 84:295–300CrossRefGoogle Scholar
  5. Best MA, Thorpe JP (2002) Use of radioactive labelled food to assess the role of the funicular system in the transport of metabolites in the cheilostome bryozoan Membranipora membranacea. In: Wyse Jackson PN, Buttler CJ, Spencer Jones ME (eds) Bryozoan studies 2001. Swets & Zeitlinger, Lisse, pp 29–35Google Scholar
  6. Best BA, Winston JE (1984) Skeletal strength of encrusting cheilostome bryozoans. Biol Bull 167:390–409CrossRefGoogle Scholar
  7. Boyce K (2010) The evolution of plant development in a paleontological context. Curr Opin Plant Biol 13:102–107PubMedCrossRefGoogle Scholar
  8. Calvet L (1900) Contribution á l’histoire naturelle des Bryozoaires Ectoproctes marins. Travaux de l’Institut de Zoologie de l’Université de Montpellier, NS 8:1–488Google Scholar
  9. Carle KJ, Ruppert EE (1983) Comparative ultrastructure of the bryozoan funiculus—a blood-vessel homolog. Zeitschrift fur Zoologische Systematik und Evolutionsforschung 21:181–193CrossRefGoogle Scholar
  10. Carter MC, Gordon DP, Gardner JPA (2008) A preliminary analysis of avicularian morphology. In: Hageman SJ, Key MM, Winston JE (eds) Bryozoan Studies 2007, Virginia museum of natural history special publication 15. Virginia Museum of Natural History, Martinsville, pp 19–30Google Scholar
  11. Carter MC, Gordon DP, Gardner JPA (2010a) Polymorphism and vestigiality: comparative anatomy and morphology of bryozoan avicularia. Zoomorphology 129:195–211CrossRefGoogle Scholar
  12. Carter MC, Gordon DP, Gardner JPA (2010b) Polymorphism and variation in modular animals: morphometric and density analyses of bryozoan avicularia. Mar Ecol Prog Ser 399:117–130CrossRefGoogle Scholar
  13. Carter MC, Lidgard S, Gordon DP, Gardner JPA (2011) Functional innovation through vestigialisation in a modular marine invertebrate. Biol J Linn Soc (in press)Google Scholar
  14. Cheetham AH, Cook PL (1983) General features of the Class Gymnolaemata. In: Robison RA (ed) Treatise on invertebrate paleontology. University of Kansas and Geological Society of America, Lawrence, pp 138–207Google Scholar
  15. Cheetham AH, Jackson JBC, Hayek LAC (1993) Quantitative genetics of bryozoan phenotypic evolution. 1. Rate tests for random change versus selection in differentiation of living species. Evolution 47:1526–1538CrossRefGoogle Scholar
  16. Cheetham AH, Sanner J, Taylor PD, Ostrovsky AN (2006) Morphological differentiation of avicularia and the proliferation of species in mid-Cretaceous Wilbertopora Cheetham, 1954 (Bryozoa: Cheilostomata). J Paleontol 80:49–71CrossRefGoogle Scholar
  17. Clarke E (2011) Plant individuality and multilevel selection theory. In: Calcott B, Sterelny K (eds) Major transitions in evolution revisited. MIT Press, Cambridge, pp 227–250Google Scholar
  18. Cook PL (1968) Polyzoa from West Africa. The Malacostega. Part 1. Bull British Mus (Nat Hist) Zool 16:116–160Google Scholar
  19. Cook PL (1985) Bryozoa from Ghana; a preliminary survey. Koninklijk Museum Voor Midden Afrika Tervuren Belgie Annalen Zoologische Wetenschappen 238:1–315Google Scholar
  20. Cunningham CW, Omland KE, Oakley TH (1998) Reconstructing ancestral character states: a critical reappraisal. Trends Ecol Evol 13:361–366PubMedCrossRefGoogle Scholar
  21. Darwin C (1872) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th edn. John Murray, LondonGoogle Scholar
  22. Davidson B, Jacobs MW, Swalla BJ (2004) The individual as a module: solitary-to-colonial transitions in metazoan evolution and development. In: Schlosser G, Wagner GP (eds) Modularity in development and evolution. University of Chicago Press, Chicago, pp 443–465Google Scholar
  23. de Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005) A modular concept of phenotypic plasticity in plants. New Phytol 166:73–82PubMedCrossRefGoogle Scholar
  24. Dick MH, Lidgard S, Gordon DP, Mawatari SF (2009) The origin of ascophoran bryozoans was historically contingent but likely. Proc R Soc B 276:3141–3148PubMedCrossRefGoogle Scholar
  25. Dick MH, Mawatari SF, Sanner J, Grishenko AV (2011) Cribrimorph and other Cauloramphus species (Bryozoa: Cheilostomata) from the northwestern Pacific. Zool Sci 28:134–147PubMedCrossRefGoogle Scholar
  26. Dunn CW (2005) Complex colony-level organization of the deep-sea siphonophore Bargmannia elongata (Cnidaria, Hydrozoa) is directionally asymmetric and arises by the subdivision of pro-buds. Dev Dyn 234:835–845PubMedCrossRefGoogle Scholar
  27. Elwick J (2007) Styles of reasoning in the British life sciences: shared assumptions, 1820–1858. Pickering & Chatto, LondonGoogle Scholar
  28. Fuchs J, Obst M, Sundberg P (2009) The first comprehensive molecular phylogeny of Bryozoa (Ectoprocta) based on combined analyses of nuclear and mitochondrial genes. Mol Phylogenet Evol 52:225–233PubMedCrossRefGoogle Scholar
  29. Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737PubMedCrossRefGoogle Scholar
  30. Geddes P, Mitchell PC (1911) Morphology. In: Chisholm H (ed) The Encyclopaedia Britannica eleventh edition, vol 18. Cambridge University Press, Cambridge, pp 863–869Google Scholar
  31. Gilbert SF, Epel D (2008) Ecological developmental biology: integrating epigenetics, medicine, and evolution. Sinauer, SunderlandGoogle Scholar
  32. Glor RE (2010) Phylogenetic insights on adaptive radiation. Annu Rev Ecol Evol Syst 41:251–270CrossRefGoogle Scholar
  33. Gordon DP (2000) Towards a phylogeny of cheilostomes—morphological models of frontal wall/shield evolution. In: Herrera Cubilla A, Jackson JBC (eds) Proceedings of the 11th International Bryozoology Association conference. Smithsonian Tropical Research Institution, Balboa, pp 17–37Google Scholar
  34. Gordon DP, Voigt E (1996) The kenozooidal origin of the ascophorine hypostegal coelom and associated frontal shield. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. National Institute of Water and Atmospheric Research, Wellington, pp 89–107Google Scholar
  35. Gordon DP, Clark AG, Harper JF (1987) Bryozoa. In: Pandian TJ, Vernberg FJ (eds) Animal energetics. Academic Press, New York, pp 173–199Google Scholar
  36. Grosberg RK, Patterson MR (1989) Review: iterated ontogenies reiterated. Paleobiology 15:67–73Google Scholar
  37. Hageman SJ (2003) Complexity generated by iteration of hierarchical modules in Bryozoa. Integr Comp Biol 43:87–98PubMedCrossRefGoogle Scholar
  38. Hageman SJ, Bayers MM, Todd CD (1999) Partitioning phenotypic variation: genotypic, environmental and residual components from bryozoan skeletal morphology. J Nat Hist 33:1713–1735CrossRefGoogle Scholar
  39. Hall BK (2003) Unlocking the black box between genotype and phenotype: cell condensations as morphogenetic (modular) units. Biol Philos 18:219–247CrossRefGoogle Scholar
  40. Harmer SF (1902) On the morphology of the Cheilostomata. Q J Microsc Sci 46:263–350Google Scholar
  41. Harmer SF (1926) The Polyzoa of the Siboga Expedition. II. Cheilostomata Anasca. Rep Siboga Exped 28b:181–501Google Scholar
  42. Harvell CD (1984) Predator-induced defense in a marine bryozoan. Science 224:1357–1359PubMedCrossRefGoogle Scholar
  43. Harvell CD (1990) The evolution of inducible defense. Parasitology 100:S53–S61PubMedCrossRefGoogle Scholar
  44. Harvell CD (1994) The evolution of polymorphism in colonial invertebrates and social insects. Q Rev Biol 69:155–185CrossRefGoogle Scholar
  45. Harvell CD (1998) Genetic variation and polymorphism in the inducible spines of a marine bryozoan. Evolution 52:80–86CrossRefGoogle Scholar
  46. Harvell CD, Grosberg RK (1988) The timing of sexual maturity in clonal animals. Ecology 69:1855–1864CrossRefGoogle Scholar
  47. Harvell CD, Helling R (1993) Experimental induction of localized reproduction in a marine bryozoan. Biol Bull 184:286–295CrossRefGoogle Scholar
  48. Hausdorf B, Helmkampf M, Nesnidal MP, Bruchhaus I (2010) Phylogenetic relationships within the lophophorate lineages (Ectoprocta, Brachiopoda and Phoronida). Mol Phylogenet Evol 55:1121–1127PubMedCrossRefGoogle Scholar
  49. Herrera CM (2009) Multiplicity in unity: plant subindividual variation and interactions with animals. University of Chicago Press, ChicagoGoogle Scholar
  50. Hyman LH (1959) The invertebrates: smaller coelomate groups Chaetognatha, Hemichordata, Pogonophora, Phoronida, Ectoprocta, Brachiopoda, Sipunculida. The coelomate Bilateria, vol V. McGraw-Hill Book Company, Inc, New YorkGoogle Scholar
  51. Iyengar EV, Harvell CD (2002) Specificity of cues inducing defensive spines in the bryozoan Membranipora membranacea. Mar Ecol Prog Ser 225:205–218CrossRefGoogle Scholar
  52. Jablonski D (2005) Evolutionary innovations in the fossil record: the intersection of ecology, development, and macroevolution. J Exp Zool Part B Mol Dev Evol 304B:504–519CrossRefGoogle Scholar
  53. Jablonski D (2007) Scale and hierarchy in macroevolution. Palaeontology 50:87–109CrossRefGoogle Scholar
  54. Jablonski D (2008) Biotic interactions and macroevolution: extensions and mismatches across scales and levels. Evolution 62:715–739PubMedCrossRefGoogle Scholar
  55. Jablonski D, Sepkoski JJ (1996) Paleobiology, community ecology, and scales of ecological pattern. Ecology 77:1367–1378PubMedCrossRefGoogle Scholar
  56. Jackson JBC (1988) Does ecology matter? Review of evolution: an ecological history of life by G. J. Vermeij. Paleobiology 14:307–312Google Scholar
  57. Jackson JBC, Erwin DH (2006) What can we learn about ecology and evolution from the fossil record? Trends Ecol Evol 21:322–328PubMedCrossRefGoogle Scholar
  58. Jackson JBC, Buss LW, Cook RE (1986) Population biology and evolution of clonal organisms. Yale University Press, New HavenGoogle Scholar
  59. Johnston G (1847) A history of the British zoophytes, vol 2. Van Voorst, LondonGoogle Scholar
  60. Kalisz S, Kramer EM (2008) Variation and constraint in plant evolution and development. Heredity 100:171–177PubMedCrossRefGoogle Scholar
  61. Karlson R (2002) Population processes in modular benthic invertebrates. In: Hughes RN (ed) Reproductive biology of invertebrates, vol XI. Wiley, Chichester, pp 255–281Google Scholar
  62. Kaufmann KW (1968) The biological role of Bugula-type avicularia (Bryozoa). In: Annoscia E (ed) Proceedings of the first international conference on Bryozoa. Società Italiana do Scienze Naturali e del Museo Civico di Storia Naturale di Milano, Milan, pp 173–182Google Scholar
  63. Kaufmann KW (1971) The form and functions of the avicularia of Bugula (Phylum Ectoprocta). Postilla 151:1–26Google Scholar
  64. Knight S, Gordon DP, Lavery SD (2011) A multi-locus analysis of phylogenetic relationships within cheilostome bryozoans supports multiple origins of ascophoran frontal shields. Mol Phylogenet Evol (in press)Google Scholar
  65. Kuklinski P, Taylor PD (2006) A new genus and some cryptic species of Arctic and boreal calloporid cheilostome bryozoans. J Mar Biol Assoc UK 86:1035–1046CrossRefGoogle Scholar
  66. Larwood GP (1969) Frontal calcification and its function in some Cretaceous and recent cribrimorph and other cheilostome Bryozoa. Bull British Mus (Nat Hist) Zool 18:173–182Google Scholar
  67. Larwood GP (1985) Form and evolution of Cretaceous myagromorph Bryozoa. In: Nielsen C, Larwood GP (eds) Bryozoa: ordovician to recent. Olsen & Olsen, Fredensborg, pp 169–174Google Scholar
  68. Levinsen GMR (1902) Studies on Bryozoa. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kjøbenhavn 54:1–32Google Scholar
  69. Lidgard S (1985) Zooid and colony growth in encrusting cheilostome bryozoans. Palaeontology 28:255–291Google Scholar
  70. Lidgard S (2008a) Predation on marine bryozoan colonies—taxa, traits and trophic groups. Mar Ecol Prog Ser 359:117–131CrossRefGoogle Scholar
  71. Lidgard S (2008b) How should we consider predation risk in marine bryozoans? In: Hageman SJ, Key MMJ, Winston JE (eds) Bryozoan studies 2007, Special Publication No. 15. Virginia Museum of Natural History, Martinsville, pp 123–131Google Scholar
  72. Lindsay SM (2010) Frequency of injury and the ecology of regeneration in marine benthic invertebrates. Integr Comp Biol 50(4):479–493PubMedCrossRefGoogle Scholar
  73. Losos JB (2010) Adaptive radiation, ecological opportunity, and evolutionary determinism. Am Nat 175(6):623–639PubMedCrossRefGoogle Scholar
  74. Losos JB (2011) Convergence, adaptation, and constraint. Evolution 65:1827–1840PubMedCrossRefGoogle Scholar
  75. Lutaud G (1985) Preliminary experiments on interzooidal metabolic transfer in anascan bryozoans. In: Nielsen C, Larwood GP (eds) Bryozoa: Ordovician to Recent. Olsen & Olsen, Fredensborg, pp 183–191Google Scholar
  76. Mackie GO (1986) Aggregates to integrates: physiological aspects of modularity in colonial animals. Philos Trans R Soc B-Biol Sci 313:175–196CrossRefGoogle Scholar
  77. Marcus E (1939) Bryozoaros marinhos Brasileiros. III. Boletim da Faculdade de Filosofia, Ciências e Letras, Universidade de São Paulo, Zoologia 3:111–353Google Scholar
  78. McKinney FK, Jackson JBC (1989) Bryozoan evolution. Allen & Unwin, LondonGoogle Scholar
  79. McKinney FK, Taylor PD, Lidgard S (2003) Predation on bryozoans and its reflection in the fossil record. In: Kelley PH, Kowalewski M, Hansen T (eds) Predator–prey interactions in the fossil record. Klewer Academic/Plenum, New York, pp 239–261CrossRefGoogle Scholar
  80. Miles JS, Harvell CD, Griggs CM, Eisner S (1995) Resource translocation in a marine bryozoan—quantification and visualization of C-14 and S-35. Mar Biol 122(3):439–445CrossRefGoogle Scholar
  81. Miner BG, Sultan SE, Morgan SG, Padilla DK, Relyea RA (2005) Ecological consequences of phenotypic plasticity. Trends Ecol Evol 20:685–692PubMedCrossRefGoogle Scholar
  82. Mukai H, Terakado K, Reed CG (1997) Bryozoa. In: Harrison FW, Woollacott RM (eds) Microscopic anatomy of invertebrates, vol 13: Lophophorates, Entoprocta and Cycliophora. Wiley-Liss, New York, pp 45–206Google Scholar
  83. Nordmann A (1840) Recherches microscopiques sur la Cellularia avicularia. In: Voyage dans la Russie méridionale et la Crimee, par la Hongrie, la Valachie et la Moldavie, exécuté en 1837 sous la direction de M Anatole de Demidoff, vol III. Ernest Bourdin, Paris, pp 679–707Google Scholar
  84. Nyhart LK, Lidgard S (2011) Individuals at the center of biology: Rudolf Leuckart’s Polymorphismus der Individuen and the ongoing narrative of parts and wholes. With an annotated translation. J Hist Biol 1–71. Online First doi: 10.1007/s10739-011-9268-6
  85. Okamura B, Freeland JR, Hatton-Ellis T (2002) Clones and metapopulations. In: Hughes RN (ed) Reproductive biology of invertebrates, vol XI. Wiley, Chichester, pp 283–312Google Scholar
  86. Osman RW, Whitlatch RB (2004) The control of the development of a marine benthic community by predation on recruits. J Exp Mar Biol Ecol 311:117–145CrossRefGoogle Scholar
  87. Ostrovsky AN (1998) Comparative studies of ovicell anatomy and reproductive patterns in Cribrilina annulata and Celleporella hyalina (Bryozoa: Cheilostomatida). Acta Zoologica 79:287–318CrossRefGoogle Scholar
  88. Ostrovsky AN (2008a) Brood chambers in cheilostome Bryozoa: diversity and revised terminology. In: Hageman SJ, Winston JE, Key MMJ (eds) Bryozoan studies 2007, Special Publication No. 15. Virginia Museum of Natural History, Martinsville, pp 193–205Google Scholar
  89. Ostrovsky AN (2008b) The parental care in cheilostome bryozoans: a historical review. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of bryozoology 2: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp 211–245Google Scholar
  90. Ostrovsky AN (2009) Evolution of the sexual reproduction in the bryozoan order Cheilostomata (Gymnolaemata). St Petersburg State University [in Russian with English summary]Google Scholar
  91. Ostrovsky AN, Taylor PD (2004) Systematics of Upper Cretaceous calloporid bryozoans with primitive spinose ovicells. Palaeontology 47:775–793CrossRefGoogle Scholar
  92. Ostrovsky AN, Taylor PD (2005) Brood chambers constructed from spines in fossil and recent cheilostome bryozoans. Zool J Linn Soc 144:317–361CrossRefGoogle Scholar
  93. Ostrovsky AN, Grischenko AV, Taylor PD, Bock P, Mawatari SF (2006) Comparative anatomical study of internal brooding in three anascan bryozoans (Cheilostomata) and its taxonomical and evolutionary implications. J Morph 267:739–749Google Scholar
  94. Ostrovsky AN, Vávra N, Porter JS (2008) Sexual reproduction in gymnolaemate Bryozoa: history and perspectives of the research. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of bryozoology 2: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp 117–210Google Scholar
  95. Ostrovsky AN, Gordon DP, Lidgard S (2009a) Independent evolution of matrotrophy in the major classes of Bryozoa: transitions among reproductive patterns and their ecological background. Mar Ecol Prog Ser 378:113–124CrossRefGoogle Scholar
  96. Ostrovsky AN, O’Dea A, Rodrígues F (2009b) Comparative anatomy of internal incubational sacs in cupuladriid bryozoans and the evolution of brooding in free-living cheilostomes. J Morph 270:1413–1430Google Scholar
  97. Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467PubMedCrossRefGoogle Scholar
  98. Pratt MC (2004) Effect of zooid spacing on bryozoan feeding success: is competition or facilitation more important? Biol Bull 207:17–27PubMedCrossRefGoogle Scholar
  99. Reed CG (1991) Bryozoa. In: Giese JS, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates. VI. Echinoderms and lophophorates. Boxwood Press, Pacific Grove, pp 85–245Google Scholar
  100. Rose MR, Lauder GV (1996) Post-spandrel adaptationism. In: Rose MR, Lauder GV (eds) Adaptation. Academic Press, London, pp 1–8Google Scholar
  101. Ruppert EE, Carle KJ (1983) Morphology of metazoan circulatory systems. Zoomorphology 103:193–208CrossRefGoogle Scholar
  102. Ryland JS (1970) Bryozoans. Hutchinson University Library, LondonGoogle Scholar
  103. Ryland JS (1977) Taxes and tropisms of bryozoans. In: Woollacott RM, Zimmer RL (eds) Biology of bryozoans. Academic Press, New York, pp 411–436Google Scholar
  104. Schlosser G, Wagner GP (2004) Modularity in development and evolution. University of Chicago Press, ChicagoGoogle Scholar
  105. Schopf TJM (1973) Ergonomics of polymorphism: its relation to the colony as the unit of natural selection in species of the phylum Ectoprocta. In: Boardman RS, Cheetham AH, Oliver WAJ (eds) Animal colonies. Dowden, Hutchinson & Ross, Stroudsburg, pp 274–294Google Scholar
  106. Schwander T, Leimar O (2011) Genes as leaders and followers in evolution. Trends Ecol Evol 26:143–151PubMedCrossRefGoogle Scholar
  107. Silén L (1942) Origin and development of the cheilo-ctenostomatous stem of Bryozoa. Zoologiska Bidrag Fran Uppsala 22:1–59Google Scholar
  108. Silén L (1977) Polymorphism. In: Woollacott RM, Zimmer RL (eds) Biology of bryozoans. Academic Press, New York, pp 184–231Google Scholar
  109. Ström R (1977) Brooding patterns of bryozoans. In: Woollacott RM, Zimmer RL (eds) Biology of bryozoans. Academic Press, New York, pp 23–56Google Scholar
  110. Tavener-Smith R, Williams A (1970) Structure of compensation sac in two ascophoran bryozoans. Proc R Soc Lond Ser B-Biol Sci 175:235–254CrossRefGoogle Scholar
  111. Taylor PD (1988) Major radiation of cheilostome bryozoans: triggered by the evolution of a new larval type? Hist Biol 1:45–64CrossRefGoogle Scholar
  112. Taylor PD, Larwood GP (1990) Major evolutionary radiations in the Bryozoa. In: Taylor PD, Larwood GP (eds) Major evolutionary radiations. Clarendon Press, Oxford, pp 209–233Google Scholar
  113. Taylor PD, McKinney FK (2002) Brooding in the Cretaceous bryozoan Stichomicropora and the origin of ovicells in cheilostomes. In: Wyse Jackson PN, Buttler CJ, Spencer Jones ME (eds) Bryozoan studies 2001. Proceedings of the 12th International Bryozoology Association symposium, Balkema, Lisse, pp 307–314Google Scholar
  114. Taylor PD, Lazo DG, Aguirre-Urreta MB (2009) Lower Cretaceous bryozoans from Argentina: a ‘by-catch’ fauna from the Agrio Formation (Neuquén Basin). Cretac Res 30:193–203CrossRefGoogle Scholar
  115. Thorpe JP (1982) Bryozoa. In: Shelton GAB (ed) Electrical conduction and behaviour in ‘simple’ invertebrates. Clarendon Press, Oxford, pp 393–439Google Scholar
  116. Thorpe JP, Shelton GAB, Laverack MS (1975a) Colonial nervous control of lophophore retraction in cheilostome Bryozoa. Science 189:60–61PubMedCrossRefGoogle Scholar
  117. Thorpe JP, Shelton GAB, Laverack MS (1975b) Electrophysiology and coordinated behavioral-responses in the colonial bryozoan Membranipora membranacea (L.). J Exp Biol 62:389–404Google Scholar
  118. Tsyganov-Bodounov A, Hayward PJ, Porter JS, Skibinski DOF (2009) Bayesian phylogenetics of Bryozoa. Mol Phylogenet Evol 52:904–910PubMedCrossRefGoogle Scholar
  119. Tuomi J, Vuorisalo T (1989) Hierarchical selection in modular organisms. Trends Ecol Evol 4:209–213PubMedCrossRefGoogle Scholar
  120. Vermeij GJ (1982) Unsuccessful predation and evolution. Am Nat 120(6):701–720CrossRefGoogle Scholar
  121. Vermeij GJ (1994) The evolutionary interaction among species—selection, escalation, and coevolution. Annu Rev Ecol Syst 25:219–236CrossRefGoogle Scholar
  122. Voigt E (1991) Mono- or polyphyletic evolution of cheilostomatous bryozoan divisions? Bulletin de la Société des Sciences Naturelles de l’Ouest de la France Memoire, H. S. 1:505–522Google Scholar
  123. Vuorisalo T, Tuomi J (1986) Unitary and modular organisms—criteria for ecological division. Oikos 47:382–385CrossRefGoogle Scholar
  124. Watson MA (1986) Integrated physiological units in plants. Trends Ecol Evol 1:119–123PubMedCrossRefGoogle Scholar
  125. White J (1979) The plant as metapopulation. Annu Rev Ecol Syst 10:109–145CrossRefGoogle Scholar
  126. Winston JE (1984) Why bryozoans have avicularia—a review of the evidence. Am Mus Novitates 2789:1–26Google Scholar
  127. Winston JE (1986) Victims of avicularia. Mar Ecol 7:193–199CrossRefGoogle Scholar
  128. Winston JE (1991) Avicularian behaviour—a progress report. Bulletin de la Société des Sciences Naturelles de l’Ouest de la France Memoire, H. S. 1:531–540Google Scholar
  129. Winston JE (2010) Life in the colonies: learning the alien ways of colonial organisms. Integr Comp Biol 50:919–933PubMedCrossRefGoogle Scholar
  130. Xing J, Qian PY (1999) Tower cells of the marine bryozoan Membranipora membranacea. J Morphol 239:121–130CrossRefGoogle Scholar
  131. Young RL, Badyaev AV (2006) Evolutionary persistence of phenotypic integration: influence of developmental and functional relationships on complex trait evolution. Evolution 60:1291–1299PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Scott Lidgard
    • 1
    Email author
  • Michelle C. Carter
    • 2
  • Matthew H. Dick
    • 3
  • Dennis P. Gordon
    • 4
  • Andrew N. Ostrovsky
    • 5
    • 6
  1. 1.Department of GeologyField Museum of Natural HistoryChicagoUSA
  2. 2.Centre for Marine Biodiversity and Biotechnology, School of Life SciencesHeriot-Watt UniversityEdinburghScotland, UK
  3. 3.Division of Natural History Sciences, Faculty of ScienceHokkaido UniversitySapporoJapan
  4. 4.National Institute of Water and Atmospheric ResearchKilbirnie, WellingtonNew Zealand
  5. 5.Department of Invertebrate Zoology, Faculty of Biology and Soil ScienceSt. Petersburg State UniversitySt. PetersburgRussia
  6. 6.Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, GeozentrumUniversity of ViennaViennaAustria

Personalised recommendations