Advertisement

Evolutionary Ecology

, Volume 26, Issue 3, pp 449–463 | Cite as

Scanning the fossil record: stratophenomics and the generation of primary evolutionary-ecological data

  • Jan A. van DamEmail author
Ideas & Perspectives

Abstract

The amount and quality of paleontological data is rapidly increasing thanks to the new developments in geological dating, 3D visualization and morphometrics, chemical and histological analysis, and database storage. However, despite the fact that data from fossils, their assemblages, temporal successions, spatial gradients and environments are of an evolutionary-ecological nature, their contribution to current mainstream evolutionary-ecological theory and methodology is low. The use of fossils is not seldom restricted to calibration (e.g., in phylogenetics), or source for historical speculation after having analyzed modern data first (e.g., in macroecology). Yet, the scale of resolution of many paleontological time series (103–105 years) is highly apt for studying the dynamics of species, the average lifetime of which is in the order of 106–107 years. In order to fully profit from the wealth of data from the rock archive, a large-scale “stratophenomics” approach is needed. The resulting data archives will not only further contribute to an increase in the knowledge of past species, communities and environments, but will also generate more and innovative theory on the mechanisms underlying species and higher taxon dynamics. Examples of new and promising approaches towards generating paleontological data will be presented under the headings of the three major stratophenomics dimensions: time, morphology and environment. Highlighted fields include astrochronology, sclerochronology and 3D morphometrics.

Keywords

Paleontology Stratigraphy Evolution Macroecology Stratophenomics Morphometrics 

Notes

Acknowledgments

I thank Dean Adams, Frits Hilgen, Salvador Moyà-Solà, and three reviewers for their constructive comments. The study was supported by the Spanish Ministerio de Ciencia e Innovación (project CGL2008–00325/BTE).

References

  1. Abels HA, Aziz HA, Ventra D, Hilgen FJ (2009) Orbital climate forcing in mudflat to marginal lacustrine deposits in the Miocene Teruel Basin (Northeast Spain). J Sediment Res 79:831–847CrossRefGoogle Scholar
  2. Adams DC, Rohlf FJ, Slice DE (2004) Geometric morphometrics: ten years of progress following the ‘revolution’. Ital J Zool 71:5Google Scholar
  3. Adams DC, Cardini A, Monteiro LR, O’Higgins P, Rohlf FJ (2011) Morphometrics and phylogenetics: principal components of shape from cranial modules are neither appropriate nor effective cladistic characters. J Hum Evol 60:240–243PubMedCrossRefGoogle Scholar
  4. Alba DM, Fortuny J, Moyà-Solà S (2010) Enamel thickness in the Middle Miocene great apes Anoiapithecus, Pierolapithecus and Dryopithecus. Proc R Soc B Biol Sci 277:2237–2245CrossRefGoogle Scholar
  5. Alroy J (1996) Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr Palaeoclimatol Palaeoecol 127:285–311CrossRefGoogle Scholar
  6. Alroy J (2000) New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707–733CrossRefGoogle Scholar
  7. Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT, Harries PJ, Hendy AJW, Holland SM, Ivany LC, Kiessling W, Kosnik MA, Marshall CR, McGowan AJ, Miller AI, Olszewski TD, Patzkowsky ME, Peters SE, Villier L, Wagner PJ, Bonuso N, Borkow PS, Brenneis B, Clapham ME, Fall LM, Ferguson CA, Hanson VL, Krug AZ, Layou KM, Leckey EH, Nürnberg S, Powers CM, Sessa JA, Simpson C, Tomašovych A, Visaggi CC (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100PubMedCrossRefGoogle Scholar
  8. Barnosky AD (2001) Distinguishing the effects of the Red queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J Vert Paleontol 21:172–185CrossRefGoogle Scholar
  9. Barrow E, Krieger J, MacLeod N (2008) Quantitative discrimination between hyracoid teeth using 3D eigensurface analysis. J Vert Paleontol 28:48AGoogle Scholar
  10. Barry JC, Morgan ME, Flynn LJ, Pilbeam D, Behrensmeyer AK, Raza SM, Khan IA, Badgley C, Hicks J, Kelley J (2002) Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology 28(S2):1–71Google Scholar
  11. Bennett KD (1990) Evolution and ecology. Cambridge University Press, CambridgeGoogle Scholar
  12. Bennington JB, DiMichele WA, Badgley C, Bambach RK, Barrett PM, Behrensmeyer AK, Bobe R, Burnham RJ, Daeschler EB, Dam JV, Eronen JT, Erwin DH, Finnegan S, Holland SM, Hunt G, Jablonski D, Jackson ST, Jacobs BF, Kidwell SM, Koch PL, Kowalewski MJ, Labandeira CC, Looy CV, Lyons SK, Novack-Gottshall PM, Potts R, Roopnarine PD, Stromberg CAE, Sues H-D, Wagner PJ, Wilf P, Wing SL (2009) Critical issues of scale in paleoecology. Palaios 24:1–4CrossRefGoogle Scholar
  13. Bininda-Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512PubMedCrossRefGoogle Scholar
  14. Bookstein FL (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, CambridgeGoogle Scholar
  15. Bookstein FL (1997) Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med Image Anal 1:225–243PubMedCrossRefGoogle Scholar
  16. Brown JH (1995) Macroecology. University of Chicago Press, ChicagoGoogle Scholar
  17. Brown JH, Lomolino MV (1998) Biogeography. Sinauer, SunderlandGoogle Scholar
  18. Buddemeier RW (1978) Schlerochronology: a data source for reef systems models. Atolls Res. Bull. 220:25–33CrossRefGoogle Scholar
  19. Callaway E (2011) Fossil data enter the web period. Nature 472:150Google Scholar
  20. Catalano SA, Goloboff PA, Giannini NP (2010) Phylogenetic morphometrics (I): the use of landmark data in a phylogenetic framework. Cladistics 26:539–549CrossRefGoogle Scholar
  21. Curtis N, Kupczik K, O’Higgins P, Moazen M, Fagan M (2008) Predicting skull loading: applying multibody dynamics analysis to a macaque skull. The Anat Rec 291:491–501CrossRefGoogle Scholar
  22. Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  23. Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88Google Scholar
  24. Eldredge N (2006) Confessions of a darwinist. Virginia Quart Rev 32–53Google Scholar
  25. Eldredge N, Gould S (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman Cooper and Co., San Francisco, pp 82–115Google Scholar
  26. Emiliani C (1955) Pleistocene temperatures. J Geol 63:538–578CrossRefGoogle Scholar
  27. Eronen, JT, Polly, PD, Fred M, Damuth J, Frank DC, Mossbrugger V, Scheidegger C, Stenseth, NC, Fortelius M (2010) Ecometrics: the traits that bind the past and present together. Int Zool 5:88–101Google Scholar
  28. Evans AR, Wilson GP, Fortelius M, Jernvall J (2007) High-level similarity of dentitions in carnivorans and rodents. Nature 445:78–81PubMedCrossRefGoogle Scholar
  29. Feist-Burkhardt S, Pross J (1999) Morphological analysis and description of Middle Jurassic dinoflagellate cyst marker species using confocal laser scanning microscopy, digital optical microscopy and conventional light microscopy. Bull Centre Rech Elf Explor Prod 22:103–145Google Scholar
  30. Felsenstein J (2002) Quantitative characters, phylogenies, and morphometrics. In: MacLeod N, Forey PL (eds) Morphology, shape, and phylogeny. Taylor & Francis, London, pp 27–42CrossRefGoogle Scholar
  31. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, SunderlandGoogle Scholar
  32. Fischer G, Wefer G (1999) Use of proxies in paleoceanography: examples from the South Atlantic. Springer, BerlinCrossRefGoogle Scholar
  33. Foote M, Raup DM (1996) Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121–140PubMedGoogle Scholar
  34. Friis EM, Pedersen KR, Crane PR (2005) When earth started blooming: insights from the fossil record. Curr Opinion Plant Biol 8:5–12CrossRefGoogle Scholar
  35. Ghosh P, Adkins J, Affek H, Balta B, Guo W, Schauble EA, Schrag D, Eiler JM (2006) 13C–18O bonds in carbonate minerals: a new kind of paleothermometer. Geochim Cosmochim Acta 70:1439–1456CrossRefGoogle Scholar
  36. Gingerich PD (1979) Paleontology, phylogeny, and classification: an example from the mammalian fossil record. Syst Zool 28:451–464CrossRefGoogle Scholar
  37. Goloboff PA, Catalano SA (2010) Phylogenetic morphometrics (II): algorithms for landmark optimization. Cladistics 27:42–51CrossRefGoogle Scholar
  38. Gunz P, Mitteroecker P, Bookstein FL (2005) Semilandmarks in three dimensions. In: Slice DE (ed) Modern morphometrics in physical anthropology. Kluwer, New York, pp 73–98CrossRefGoogle Scholar
  39. Hadly EA, Ramakrishnan U, Chan YL, van Tuinen M, O’Keefe K, Spaeth PA, Conroy CJ (2004) Genetic response to climatic change: insights from ancient DNA and phylochronology. Public Libr Sci Biol 2:e29Google Scholar
  40. Harrington GJ (2010) Macroecology in deep-time. Palaeontology 53:1201CrossRefGoogle Scholar
  41. Hawkins BA, Porter EE, Diniz-Filho JAF (2003) Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds. Ecology 84:1608–1623CrossRefGoogle Scholar
  42. Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132PubMedCrossRefGoogle Scholar
  43. Hilgen FJ (1991) Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary. Earth Planet Sci Lett 107:349–368CrossRefGoogle Scholar
  44. Hilgen FJ, Abdul Aziz H, Krijgsman W, Raffi I, Turco E (2003) Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi (Middle-Upper Miocene, northern Italy). Palaeogeogr Palaeoclimatol Palaeoecol 199:229–264CrossRefGoogle Scholar
  45. Hinnov LA (2004) Earth’s orbital parameters and cycle stratigraphy. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004. Cambridge University Press, Cambridge, pp 55–62Google Scholar
  46. Hoppe KA, Koch PL, Carlson RW, Webb DS (1999) Tracking mammoths and mastodons: reconstruction of migratory behavior using strontium isotope ratios. Geology 27:439–442CrossRefGoogle Scholar
  47. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, PrincetonGoogle Scholar
  48. Hüsing SK, Hilgen FJ, Abdul Aziz H, Krijgsman W (2007) Completing the Neogene geological time scale between 8.5 and 12.5 Ma. Earth Planet Sci Lett 253:340–358Google Scholar
  49. Ivany LC (1996) Coordinated stasis or coordinated turnover? Exploring intrinsic vs. extrinsic controls on pattern. Palaeogeogr Palaeoclimatol Palaeoecol 127:239–256CrossRefGoogle Scholar
  50. Ivany LC, Brett CE, Wall HLB, Wall PD, Handley JC (2009) Relative taxonomic and ecologic stability in Devonian marine faunas of New York State: a test of coordinated stasis. Paleobiology 35:499–524CrossRefGoogle Scholar
  51. Jablonski D (1999) The future of the fossil record. Science 284:2114–2116PubMedCrossRefGoogle Scholar
  52. Jensen RJ, Ciofani KM, Miramontes LC (2002) Lines, outlines, and landmarks: morphometric analyses of leaves of Acer rubrum, Acer saccharinum (Aceraceae) and their hybrid. Taxon 51:475–492CrossRefGoogle Scholar
  53. Kennett JP, Keller G, Srinivasan MS (1985) Miocene planktonic foraminiferal biogeography and paleogeographic development of the Indo-Pacific region. In: Kennett JP (ed) The Miocene ocean: paleogeography and biogeography. Geol Soc Am Mem 163:197–236Google Scholar
  54. Ketcham R, Carlson WD (2001) Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences. Comp Geosci 27:381–400CrossRefGoogle Scholar
  55. Kidwell SM, Flessa KW (1996) The quality of the fossil record: populations, species, and communities. Ann Rev Earth Planet Sci 24:433–464CrossRefGoogle Scholar
  56. Klevezal GA (1996) Recording structures of mammals. Determination of age and reconstruction of life history. Balkema, RotterdamGoogle Scholar
  57. Klingenberg CP, Gidaszewski NA (2009) Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst Biol 59:245–261CrossRefGoogle Scholar
  58. Koch PL (1998) Isotopic reconstruction of past continental environments. Annu Rev Earth Planet Sci 26:573–613Google Scholar
  59. Köhler M, Moyà-Solà S (2009) Physiological and life history strategies of a fossil large mammal in a resource-limited environment. Proc Natl Acad Sci USA 106:20354–20358PubMedCrossRefGoogle Scholar
  60. Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of earth history. Science 320:500–504PubMedCrossRefGoogle Scholar
  61. Lane RH, Steininger FF, Kaesler RL, Ziegler W, Lipps J (2000) Fossils and the future. Paleontology in the 21st century. Kramer, FrankfurtGoogle Scholar
  62. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long-term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285CrossRefGoogle Scholar
  63. Lazzari V, Tafforeau P, Aguilar J-P, Michaux J (2008) Topographic maps applied to comparative molar morphology; the case of murine and cricetine dental plans (Rodentia, Muroidea). Paleobiology 34:46–64CrossRefGoogle Scholar
  64. Lourens LJ, Hilgen FJ, Laskar J, Shackleton NJ, Wilson D (2004) The Neogene period. In: Gradstein FM, Ogg JG, Smith AG (eds) A geologic time scale 2004. Cambridge University Press, Cambridge, pp 409–440Google Scholar
  65. Macho GA, Leakey MG, Williamson DK, Jiang Y (2003) Palaeoenvironmental reconstruction: evidence for seasonality at Allia Bay, Kenya, at 3.9 million years. Palaeogeogr Palaeoclimatol Palaeoecol 199:17–30CrossRefGoogle Scholar
  66. MacLeod N (1999) Generalizing and extending the eigenshape method of shape space visualization and analysis. Paleobiology 25:107–138Google Scholar
  67. Magallón S, Sanderson MJ (2001) Absolute diversification rates in angiosperm clades. Evolution 55:1762–1780PubMedGoogle Scholar
  68. McGlone MS (1996) When history matters: scale, time, climate and tree diversity. Global Ecol Biogeogr 5:309–314CrossRefGoogle Scholar
  69. McPeek MA, Shen L, Torrey JZ, Farid H (2008) The tempo and mode of three-dimensional morphological evolution in male reproductive structure. Am Nat 171:E158-E178Google Scholar
  70. Milankovitch MM (1920) Théorie mathématique des phénomènes thermiques produits par la radiation solaire. Académie Yougoslave des Sciences et des Arts de Zagreb, Gauthier-VillarsGoogle Scholar
  71. Nee S, Mooers AØ, Harvey PH (1992) Tempo and mode of evolution revealed from molecular phylogenies. Proc Nat Acad Sci USA 89:8322–83265PubMedCrossRefGoogle Scholar
  72. Olsen PE, Kent DV (1999) Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the early Mesozoic time scale and the long-term behavior of the planets. Philosoph Trans R Soc Lond 357:1761–1787CrossRefGoogle Scholar
  73. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  74. Quental TB, Marshall CR (2010) Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol Evol 25:434–441PubMedCrossRefGoogle Scholar
  75. Ramakrishnan UMA, Hadly EA (2009) Using phylochronology to reveal cryptic population histories: review and synthesis of 29 ancient DNA studies. Mol Ecol 18:1310–1330PubMedCrossRefGoogle Scholar
  76. Rayfield EJ (2007) Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Ann Rev Earth Planet Sci 35:541–576CrossRefGoogle Scholar
  77. Renaud S, van Dam JA (2002) Influence of biotic and abiotic environment on size and shape evolution in a Late Miocene murine lineage (Teruel Basin, Spain). Palaeogeogr Palaeoclimatol Palaeoecol 184:163–175CrossRefGoogle Scholar
  78. Ricklefs RE (2004) A comprehensive framework for global patterns in biodiversity. Ecol Lett 7:1–15CrossRefGoogle Scholar
  79. Robertson I, Leavitt SW, Loader NJ, Buhay B (2008) Progress in isotope dendroclimatology. Chem Geol 252:EX1–EX4Google Scholar
  80. Rohlf FJ (2001) Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:2143–2160PubMedGoogle Scholar
  81. Rohlf FJ (2002) Geometric morphometrics and phylogeny. In: MacLeod N, Forey PL (eds) Morphology, shape, and phylogeny. Taylor & Francis, London, pp 175–193CrossRefGoogle Scholar
  82. Rohlf FJ, Marcus LF (1993) A revolution in morphometrics. Trends Ecol Evol 8:129–132CrossRefGoogle Scholar
  83. Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol Evol 46:340–348CrossRefGoogle Scholar
  84. Rull V (2010) Ecology and palaeoecology: two approaches, one objective. Open Ecol J 3:1–5CrossRefGoogle Scholar
  85. Salazar-Ciudad I, Jernvall J (2010) A computational model of teeth and the developmental origins of morphological variation. Nature 464:583–586PubMedCrossRefGoogle Scholar
  86. Schöne B, Rodland D, Wehrmann A, Heidel B, Oschmann W, Zhang Z, Fiebig J, Beck L (2007) Combined sclerochronologic and oxygen isotope analysis of gastropod shells (Gibbula cineraria, North Sea): life-history traits and utility as a high-resolution environmental archive for kelp forests. Mar Biol 150:1237–1252CrossRefGoogle Scholar
  87. Sepkoski JJ (2002) A compendium of fossil marine animal genera. Bull Am Paleontol 363:1–560Google Scholar
  88. Slice DE (2007) Geometric morphometrics. Ann Rev Anthropol 36:261–281CrossRefGoogle Scholar
  89. Smith JM (1984) Evolution: palaeontology at the high table. Nature 309:401–402CrossRefGoogle Scholar
  90. Smith AB (2000) Stratigraphy in phylogeny reconstruction. J Paleontol 74:763–766CrossRefGoogle Scholar
  91. Smith AB, McGowan AJ (2005) Cyclicity in the fossil record mirrors rock outcrop area. Biol Lett 1:443–445PubMedCrossRefGoogle Scholar
  92. Smith NE, Strait SG (2008) PaleoView3D: from specimen to online digital model. Palaeont Electr 11:11AGoogle Scholar
  93. Souter T, Cornette R, Pedraza J, Hutchinson J, Baylac M (2010) Two applications of 3D semi-landmark morphometrics implying different template designs: the theropod pelvis and the shrew skull. Compt Rend Palevol 9:411–422CrossRefGoogle Scholar
  94. Stadler T (2011) Mammalian phylogeny reveals recent diversification rate shifts. Proc Natl Acad Sci USA 108:6187–6192PubMedCrossRefGoogle Scholar
  95. Tafforeau P, Boistel R, Boller E, Bravin A, Brunet M, Chaimanee Y, Cloetens P, Feist M, Hoszowska J, Jaeger JJ, Kay RF, Lazzari V, Marivaux L, Nel A, Nemoz C, Thibault X, Vignaud P, Zabler S (2006) Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimens. Appl Phys A Mater Sci Process 83:195–202CrossRefGoogle Scholar
  96. Tafforeau P, Bentaleb I, Jaeger J–J, Martin C (2007) Nature of laminations and mineralization in rhinoceros enamel using histology and X-ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic studies. Palaeogeogr Palaeoclimatol Palaeoecol 246:206–227CrossRefGoogle Scholar
  97. Totman Parrish JT (1998) Interpreting pre-Quaternary climate from the geologic record. Columbia University Press, New YorkGoogle Scholar
  98. Turco E, Hilgen FJ, Lourens LJ, Shackleton NJ, Zachariasse WJ (2001) Punctuated evolution of global climate cooling during the late Middle to early Late Miocene: high-resolution planktonic foraminiferal and oxygen isotope records from the Mediterranean. Paleoceanography 16:405–423CrossRefGoogle Scholar
  99. Tzedakis PC, Hooghiemstra H, Pälike H (2006) The last 1.35 million years at Tenaghi Philippon: revised chronostratigraphy and long-term vegetation trends. Quat. Sci. Rev 25:3416–3430Google Scholar
  100. Van Dam JA (2006) Geographic and temporal patterns in the late Neogene (12–3 Ma) aridification of Europe. The use of small mammals as paleoprecipitation proxies. Palaeogeogr Palaeoclimatol Palaeoecol 238:190–218CrossRefGoogle Scholar
  101. Van Dam JA, Abdul Aziz H, Sierra MAA, Hilgen FJ, van den Ostende LW, Lourens LJ, Mein P, van der Meulen AJ, Pelaez-Campomanes P (2006) Long-period astronomical forcing of mammal turnover. Nature 443:687–691Google Scholar
  102. Van der Niet T, Zollikofer CPE, Ponce de León MS, Johnson SD, Linder PH (2010) Three-dimensional geometric morphometrics for studying floral shape variation. Trends Plant Sci 15:423–426PubMedCrossRefGoogle Scholar
  103. Van Vugt N, Steenbrink J, Langereis CG, Hilgen FJ, Meulenkamp JE (1998) Magnetostratigraphy-based astronomical tuning of the early Pliocene lacustrine sediments of Ptolemais (NW Greece) and bed-to-bed correlation with the marine record. Earth Planet Sci Lett 164:535–551Google Scholar
  104. Vrba ES (1995) On the connections between paleoclimate and evolution. In: Vrba ES, Denton GH, Partridge TC, Burckle LH (eds) Paleoclimate and evolution, with emphasis on human origins. Yale University Press, New Haven, pp 24–45Google Scholar
  105. Wilkinson RD, Steiper ME, Soligo C, Martin RD, Yang Z, Tavaré S (2010) Dating primate divergences through an integrated analysis of palaeontological and molecular data. Syst Biol 60:16–31PubMedCrossRefGoogle Scholar
  106. Willis KJ, Bailey RM, Bhagwat SA, Birks HJB (2010) Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol Evol 25:583–591PubMedCrossRefGoogle Scholar
  107. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut Català de Paleontologia Miquel Crusafont (ICP)Cerdanyola del VallèsSpain

Personalised recommendations