Advertisement

Evolutionary Ecology

, Volume 25, Issue 3, pp 657–679 | Cite as

Experimental microevolution: transplantation of pink salmon into the European North

  • Natalia V. GordeevaEmail author
  • Elena A. Salmenkova
Original Paper

Abstract

Human-mediated translocations of species beyond their native ranges can enhance evolutionary processes in populations introduced to novel environments. We studied such processes in several generations of pink salmon Oncorhynchus gorbuscha introduced to the European North of Russia using a set of morphological and life-history traits as well as molecular genetic markers with different selective values: protein-coding loci, mtDNA, microsatellites, and MHC. The introduction of reproductively isolated pink salmon broodlines of odd and even years yielded different results. The odd-year broodline established self-reproducing local populations in many rivers of new range, but sustainable changes in external morphology, reproduction, and life-history, as well as the impoverishment of the gene pool occurred. Their successful colonisation of the new range resulted in specialisation manifested in the rapid directional shifts in some highly heritable phenotypic traits accompanied by increased homozygosity at molecular markers as a consequence of genetic drift and selective processes. The returns of transplanted pink salmon of even-year broodline decreased sharply already in the second generation, but there was no marked reduction of genetic diversity. Our data, as well as the analysis of the history of all pink salmon transplantations beyond the species range, demonstrate comparatively greater success of introduced odd-year broodline and permit to assume different adaptive plasticity of the even- and odd-year broodlines in pink salmon, what is most likely determined by differences in their evolutionary histories. Population genetic data suggest that the even-year broodline probably diverged from the odd-year broodline relatively recently and, due to the founder effect, may have lost a part of its genetic variation with which adaptive plasticity potential is associated.

Keywords

Microevolution Introduction Adaptation Molecular markers Oncorhynchus gorbuscha 

Notes

Acknowledgments

We thank Alexander Ul’yanov and Anastasia Balanina for providing the information on the Umba River Hatchery, Vadim Borkichev and Alexey Veselov for providing the samples from the Soyana, Pyalitza and Indera Rivers. We also thank the organizers of the conference “Evolutionary Ecology of Fishes 2009” in Erkner/Berlin, the editors and reviewers, and Sergei Alekseyev for helpful comments on the manuscript. This study was supported by the Programs of Fundamental Studies of the Russian Academy of Sciences “Biodiversity (Section: Gene pools and genetic diversity)” and “Fundamental bases of biological resources management”, the grants of President of Russian Federation for young scientists support (project MK-5555.2008.4) and the Russian Foundation for Basic Research (project 10-04-00866).

References

  1. Altukhov YP, Salmenkova EA (1990) Introductions of distinct stocks of chum salmon, Oncorhynchus keta (Walbaum), into natural populations of species. J Fish Biol 37(Suppl A):25–33CrossRefGoogle Scholar
  2. Altukhov YP, Salmenkova EA, Omel’chenko VT et al (1987) Balancing selection as a possible factor in the maintenance of uniform allele frequencies of enzyme coding loci in populations of pink salmon Oncorhynchus gorbuscha (Walbaum). Genetika (Moscow) 23(10):1884–1896Google Scholar
  3. Altukhov YP, Salmenkova EA, Omel’chenko VT (2000) Salmonid fishes: population biology, genetics and management. Blackwell Science, OxfordGoogle Scholar
  4. Antao T, Lopes A, Lopes RJ et al (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9:323PubMedCrossRefGoogle Scholar
  5. Apanius V, Penn D, Slev PR et al (1997) The nature of selection of the major histocompatibility complex. Critical Rev Immunol 17:179–224Google Scholar
  6. Aspinwall N (1974) Genetic examination of North American populations of the pink salmon, Oncorhynchus gorbuscha, possible evidence for the neutral mutation-random drift hypothesis. Evolution 28:295–305CrossRefGoogle Scholar
  7. Barskaya Y, Ieshko EP, Novokhatskaya OV (2005) Formation of parasite fauna of pink salmon Oncorhynchus gorbuscha (Walbaum, 1792) under acclimatization. In: Proceedings of the IXth international conference on the study, sustainable use and conservation of natural resources of the White Sea, Petrozavodsk, 11–14 Oct, pp 39–43Google Scholar
  8. Beacham TD (1985) Meristic and morphomeric variation in pink salmon (Oncorhynchus gorbuscha) in southern British Columbia and the Puget Sound. Can J Zool 63:366–372CrossRefGoogle Scholar
  9. Beacham TD, Murrey CB (1987) Adaptive variation in body size, age, morphology, egg size, and developmental biology of chum salmon (Oncorhynchus keta) in British Columbia. Can J Fish Aquat Sci 44:244–261CrossRefGoogle Scholar
  10. Beacham TD, Murrey CB (1993) Fecundity and egg size variation in North American Pacific salmon (Oncorhynchus). J Fish Biol 42:485–508CrossRefGoogle Scholar
  11. Beacham TD, Withler RE, Murray CB, Barner LW (1988) Variation in body size, morpholgy, egg size, and biochemical genetics of pink salmon in British Columbia. Trans Am Fish Soc 117:109–126CrossRefGoogle Scholar
  12. Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? Evol Biol 16:363–377CrossRefGoogle Scholar
  13. Berthier P, Beaumont MA, Cornuet J-M, Luikart G (2002) Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics 160:741–751PubMedGoogle Scholar
  14. Bittner D, Excoffier L, Largiader CR (2010) Patterns of morphological changes and hybridization between sympatric whitefish morphs (Coregonus spp.) in a Swiss lake: a role for eutrophication? Mol Ecol 19:2152–2216PubMedCrossRefGoogle Scholar
  15. Bossdorf O, Auge H, Lafuma L et al (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11PubMedCrossRefGoogle Scholar
  16. Brannon EL (1987) Mechanisms stabilizing salmonid fry emergence timing. Can Special Publ Fish Aquat Sci 96:120–124Google Scholar
  17. Brykov VLA, Polyakova N, Skurikhina LA, Kukhlevsky AD (1996) Geographical and temporal mitochondrial DNA variability in populations of pink salmon. J Fish Biol 48:899–909CrossRefGoogle Scholar
  18. Brykov VLA, Polyakova N, Skurikhina LA, Kukhlevsky AD et al (1999) Analysis of mtDNA indicates weak temporal genetic heterogenity in pink salmon spawning runs in two rivers on Sakhalin Island. J Fish Biol 55:617–635CrossRefGoogle Scholar
  19. Burger CV, Scribner KT, Spearman WJ et al (2000) Genetic contribution of three introduced life history forms of sockeye salmon to colonization of Frazer lake, Alaska. Can J Fish Aquat Sci 57:2096–2111CrossRefGoogle Scholar
  20. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570CrossRefGoogle Scholar
  21. Churikov D, Gharrett AJ (2002) Comparative phylogeography of the two pink salmon broodlines: an analysis based on a mitochondrial DNA genealogy. Mol Ecol 11:1077–1101PubMedCrossRefGoogle Scholar
  22. Dickerson BR, Willson MF, Bentzen P, Quinn TP (2005) Heritability of life history and morphological traits in a wild pink salmon population assessed by DNA parentage analysis. Trans Am Fish Soc 134:1323–1328CrossRefGoogle Scholar
  23. Dieringer D, Schlotterer C (2003) Microsatellite analyzer (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169CrossRefGoogle Scholar
  24. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449PubMedCrossRefGoogle Scholar
  25. Dupont-Nivet M, Chevassus B, Mauger S et al (2010) Side effects of sexual maturation on heritability estimates in rainbow trout (Oncorhynchus mykiss). Aquac Res 41:878–880CrossRefGoogle Scholar
  26. Dyagilev SE, Markevich NB (1979) Raznovremennost“ sozrevaniya gorbushi Oncorhynchus gorbuscha (Walb.) chetnikh i nechetnikh let kak osnovnoy factor, opredelivshiy razlichnie rezul’taty eye akklimatizatsii na severe evropeyskoy chasti SSSR (Different time at maturity of odd- and even-year pink salmon, Oncorhynchus gorbuscha (Walb.) as main reason of different results of their acclimatization in the European North of USSR). Voprosy ikhtiologii (J Ichthyol) 19(2):230–245Google Scholar
  27. Edwards SV, Hedrick PW (1998) Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13:305–311PubMedCrossRefGoogle Scholar
  28. Einum SM, Kinnison T, Hendry AP (2004) Evolution of egg size and number. In: Hendry AP, Stearns SC (eds) Evolution illuminated: salmon and their relatives. Oxford University Press, Oxford/New York, pp 127–153Google Scholar
  29. Estoup A, Presa P, Krieg F et al (1993) (CT)n and (GT)n microsatellites: a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71:488–496PubMedCrossRefGoogle Scholar
  30. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  31. Excoffier L, Lava G, Schneider S (2005) Arlequin Ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  32. Fleming IA, Cross MR (1989) Evolution in adult female life history and morphology in a Pacific salmon (coho: Oncorhynchus kisutch). Evolution 43:141–157CrossRefGoogle Scholar
  33. Funk WC, Tyburczy JA, Knudsen KL et al (2005) Genetic basis of variation in morphological and life-history traits of a wild population of pink salmon. Heredity 96(1):24–31Google Scholar
  34. Gharrett AJ, Smoker WW (1991) Two generations of hybrids between even- and odd-year pink salmon (Oncorhynchus gorbuscha): a test for outbreeding debression? Can J Fish Aquat Sci 48(9):1744–1749CrossRefGoogle Scholar
  35. Gharrett AJ, Smoker WW (1993) Genetic components in life history traits contribute to population structure. In: Cloud JG, Thorgaard GA (eds) Genetic conservation of salmonid fishes. Plenum Press, New York, pp 197–202Google Scholar
  36. Golovanov IS (1982) O estestvennom vosproizvodstve gorbushi Oncorhynchus gorbuscha (Walbaum) (Salmonidae) na severnom poberezhie Okhotskogo morya (On the native reproduction of pink salmon Oncorhynchus gorbuscha (Walbaum) (Salmonidae) at the north coast of Sea of Okhotsk). Voprosy Ikhtiologii (J Ichthyol) 22(4):568–575Google Scholar
  37. Gordeeva NV, Salmenkova EA (2005) Morpho-ecological flexibility of pink salmon Oncorhynchus gorbuscha acclimatized in the White Sea basin. J Ichthyol 45(1):86–97Google Scholar
  38. Gordeeva NV, Salmenkova EA, Altukhov YP et al (2003) Genetic changes in pink salmon Oncorhynchus gorbuscha (Walbaum) during acclimatization in the White Sea basin. Russ J Genet 39(3):322–332CrossRefGoogle Scholar
  39. Gordeeva NV, Salmenkova EA, Altukhov YP (2004) Acclimatization of pink salmon, Oncorhynchus gorbuscha (Walbaum) in the European North: data of restriction analysis of mtDNA. Russ J Genet 40(3):393–400CrossRefGoogle Scholar
  40. Gordeeva NV, Salmenkova EA, Altukhov YP (2005) Genetic differentiation of Pacific pink salmon during colonization of a new area. Doklady Akademii Nauk 40(5):714–717Google Scholar
  41. Gordeeva NV, Salmenkova EA, Altukhov YP (2006) Genetic divergence in pink salmon introduced into the European north of Russia: microsatellite and allozyme variation. Russ J Genet 42(3):268–278CrossRefGoogle Scholar
  42. Gorshkova GV, Gorshkov SA, Kinas NM (1988) Chromosome polymorphism in pink salmon Oncorhynchus gorbuscha (Walb.) from the populations of even- and odd-year broodlines. Genetika 24:1873–1881 Google Scholar
  43. Goudet J (2001) FSTAT, Version 2.9.3.1. Institute of Ecology, Lausanne, Switzerland. http://www.unil.ch/izea/softwares/fstat.html
  44. Grachova ML, Khovanskaya LL (1994) Opyt iskusstvennogo vosproizvodstva lososei na Ol’skoy EPAB (Experience of artificial reproduction of salmons at the Experimental Ola River Hatchery). Biologicheskie osnovy razvitiya lososevodstva v Magadanskom regione. Trudy GosNIIORKH, MoTINRO, vol 308. MoTINRO, Magadan, pp 62–74Google Scholar
  45. Gritsevskaya GL (1965) Itogi issledovaniya Kol’skogo poluostrova i nekotorye dannye o rekakh pomorskogo poberezhia Belogo morya (k probleme akklimatizatsii gorbushi) (Results of Kola Peninsula research and some data on rivers of the Pomor coast of White Sea (to the problem of pink salmon acclimatization). Trudy Murmanskogo biologicheskogo instituta 9(13):5–12Google Scholar
  46. Haldane JBS (1949) Suggestions as to quantitative measurement of rates of evolution. Evolution 3:51–56PubMedCrossRefGoogle Scholar
  47. Harache Y (1992) Pacific salmon in Atlantic waters. ICES Mar Sci Symp 194:31–55Google Scholar
  48. Hawkins SL, Varnavskaya NV, Matzak EA et al (2002) Population structure of odd-broodline Asian pink salmon and its contrast to the even-brodline structure. J Fish Biol 60:370–388CrossRefGoogle Scholar
  49. Heard WR (1991) Life history of pink salmon (Oncorhynchus gorbuscha). In: Groot C, Margolis L (eds) Pacific salmon life histories. UBC Press, Vancouver, pp 119–230Google Scholar
  50. Hedrick PW (1994) Evolutionary genetics of the major histocompatibility complex. Am Nat 143:945–964CrossRefGoogle Scholar
  51. Hendry AP, Kinnison MT (1999) Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53:1637–1653CrossRefGoogle Scholar
  52. Hendry AP, Quinn TP, Utter FM (1996) Genetic evidence for the persistence and divergence of native and introduced sockeye salmon (Oncorhynchus nerka) within Lake Washington, Washington. Can J Fish Aquat Sci 53:823–832CrossRefGoogle Scholar
  53. Ionov AV (1987) Biologicheskaya neodnorodnost’ Oncorhynchus gorbuscha (Walbaum) materikovogo poberezhya Okhotskogo morya (Biological differences in pink salmon in mainland coast of Sea of Okhotsk). In: Biologia presnovodnikh ryb Dal’nego vostoka. DVO AN SSSR, Vladivostok, pp 35–48Google Scholar
  54. Jonsson N, Jonsson B, Fleming IA (1996) Does early growth cause a phenotypically plastic response in egg production of Atlantic salmon? Funct Ecol 10:89–96CrossRefGoogle Scholar
  55. Kalinowski ST (2005) HP-Rare 1.0: a computer program for performing rarefraction on measures of allelic richness. Mol Ecol 5:187–189CrossRefGoogle Scholar
  56. Karpevich AF, Agapov VS, Magomedov GM (1991) Akklimatizatsiya i kul’tivirovanie lososevykh ryb-introdutsentov (Acclimatization and culture of introduced salmonid fishes). VNIRO, MoscowGoogle Scholar
  57. Khovanskii IE (2000) Akklimatizatsia severookhotomorskoi gorbushi na Evropeiskom Severe (Acclimatization of pink salmon from the northern part of Okhotsk Sea in European North). Rybnoe Khozyaistvo 2:38–39Google Scholar
  58. Kinnison MT, Hendry AP (2001) The pace of modern life II: from rates of contemporary microevolution to patterns and process. Genetica 112–113:145–164PubMedCrossRefGoogle Scholar
  59. Kinnison MT, Unwin M, Bustead N, Quinn T (1997) Population-specific variation in body dimensions of adult chinook salmon (Oncorhynchus tshawytscha) from New Zealand and their source population, 90 years after introduction. Can J Fish Aquat Sci 55:554–563CrossRefGoogle Scholar
  60. Kinnison MT, Unwin MJ, Hendry AP, Quinn TP (2001) Migratory costs and the evolution of egg size and number in introduced and indigenous salmon populations. Evolution 55(8):1656–1667PubMedGoogle Scholar
  61. Lande R (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–334CrossRefGoogle Scholar
  62. Loenko AA, Berestovskii EG, Lysenko LF, Neklyudov MN (2000) Gorbusha v rekakh Kol’skogo poluostrova (Pink salmon in Kola Peninsula rivers). In: Matishov GG (ed) Vidyvselentsy v evropeiskie morya Rossii (Invasive species in the European Seas of Russia). KNTs RAN, Apatity, pp 259–269Google Scholar
  63. Marchenko SL, Golovanov IS, Khovansky IE (2004) The effectiveness of reproduction of pink salmon Oncorhynchus gorbuscha (Walbaum) in Ola River (north coast of Sea of Okhotsk). In: Volobuev VV (ed) Sostoyanie rybokhozyaistvennykh issledovanii v basseine severnoi chasti Okhotskogo morya, 2. MagadanNIRO, Magadan, pp 227–236Google Scholar
  64. McGregor AJ, Lane S, Thomason MA et al (1998) Migration timing, a life history trait important in the genetic structure of pink salmon. NPAFC Bull 1:262–273Google Scholar
  65. Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243PubMedCrossRefGoogle Scholar
  66. Miller M (1997) Tools for population genetic analyses (TFPGA) 1.3: a Windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by authorGoogle Scholar
  67. Miller KM, Withler RE (1997) Mhc diversity in Pacific salmon: population structure and transspecies allelism. Hereditas 127:83–95PubMedCrossRefGoogle Scholar
  68. Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163PubMedGoogle Scholar
  69. O’Reilly P, Hamilton LC, McConnell SK, Wright JM (1996) Rapid detection of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fish Aquat Sci 53:2292–2298CrossRefGoogle Scholar
  70. Olsen JB, Wilson SL, Kretschmer EJ et al (2000) Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon. Mol Ecol 9:2185–2187PubMedCrossRefGoogle Scholar
  71. Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size, Version 1.3. Queensland Government, Department of Primary Industries and FisheriesGoogle Scholar
  72. Phillips RB, Kapuscinski AR (1988) High frequency of translocation heterozygotes in odd-year populations of pink salmon (Oncorhynchus gorbuscha). Cytogen Cell Genet 48:178–182CrossRefGoogle Scholar
  73. Quinn TP, Nielsen JL, Gan C et al (1996) Origin and genetic structure of chinook salmon, Oncorhynchus tshawytscha transplanted from California to New Zealand: allozyme and mtDNA evidence. Fish Bull 94:506–521Google Scholar
  74. Quinn TP, Kinnison MT, Unwin MJ (2001) Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate and process. Genetica 112–113:493–513PubMedCrossRefGoogle Scholar
  75. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  76. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  77. Ricker WE (1972) Hereditary and environmental factors affecting certain salmonid populations. In: Larkin PA, Simon SC (eds) The stock concept in Pacific salmon. University of British Columbia, Vancouver, pp 27–160Google Scholar
  78. Salmenkova EA (1989) Osnovnye rezul’taty i zadachi populatsionno-geneticheskikh issledovaniy lososevykh ryb (Main results and problems of population genetic researches of salmonid fishes). In: Kirpichnikiv VS (ed) Genetika v aquaculture. Nauka, Leningrad, pp 7–29Google Scholar
  79. Salmenkova EA, Omel’chenko VT, Malinina TV et al. (1981) Populyatsionno-geneticheskie razlichiya mezhdu smezhnymi pokoleniyami u gorbushi, razmnozhayusheysya v rekakh aziatskogo poberezhya Severnoy Patsifiki (Population genetic differences between odd- and even-year lineages of pink salmon breeding in rivers along Asian coast of North Pacific). In: Genetika i razmnozhenie morskikh zhivotnykh, vol 2. DVNTs AN SSSR, Vladivostok, pp 95–104Google Scholar
  80. Salmenkova EA, Gordeeva NV, Omel’chenko VT, Altukhov YP et al (2006) Genetic differentiation of pink salmon Oncorhynchus gorbuscha Walbaum in the Asian part of the range. Russ J Genet 42(10):1148–1163CrossRefGoogle Scholar
  81. Scribner KT, Gust JR, Fields RL (1996) Isolation and characterization of novel microsatellite loci: cross-species amplification and population genetic applications. Can J Fish Aquat Sci 53:685–693CrossRefGoogle Scholar
  82. Smirnov AI (1975) Biologia razmnozhenia i razvitie tikhookeanskikh lososei (Reproductive biology and development of Pacific salmons). Moscow State University, MoscowGoogle Scholar
  83. Smoker WW, Gharrett AJ, Stecoll MS (1998) Genetic variation of return date in a population of pink salmon: a consequence of fluctuating environment and dispersive selection? Alaska Fish Res Bull 5:46–54Google Scholar
  84. Smoker WW, Gharrett AJ, Stecoll MS, Taylor SG (2000) Genetic variation of fecundity and egg size in anadromous pink salmon Oncorhynchus gorbuscha Walbaum. Alaska Fish Res Bull 7:44–50Google Scholar
  85. Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18:94–0101CrossRefGoogle Scholar
  86. Studenov II (1998) Pokatnaya migratsia, biologiya i raschet chislennosti molodi gorbushi v reke Megre (zimnii bereg Belogo moray) (Catadromous migration, biology and number counting of pink salmon smolts in Megra River (North coast of White Sea). In: Proceedings of the VII international conference on the study, sustainable use and conservation of natural resources of the White Sea, Arkhangel’sk, pp 234–235Google Scholar
  87. Su G, Liljedahl LE, Gall AE (1997) Genetic and environmental variation of female reproductive traits in rainbow trout (Oncorhynchus mykiss). Aquaculture 154:113–122CrossRefGoogle Scholar
  88. Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360PubMedCrossRefGoogle Scholar
  89. Varnavskaya NV (2001) Prinzipi geneticheskoi identifikatsii populatsii tikhookeanskikh lososei v svyazi s zadachami ratsional’nogo promysla (Principles of genetic identification of Pacific salmon populations in connection to rational fishery). Dissertation, Vavilov Institute of General Genetics RASGoogle Scholar
  90. Varnavskaya NV, Kudzina MA, Vronsky BB et al (1995) Sravnitel’naya kharacteristika mnogoletnikh kolebanii chislennosti v regional’nikh kompleksakh populatsiy gorbushi, Oncorhynchus gorbuscha (Walbaum), linii chetnikh i nechetnikh let v aziatskoi chasti areala vida (Comparative analysis of long-term number fluctuations of regional complexes of even- and odd-year pink salmon, Oncorhynchus gorbuscha (Walbaum) populations in Asian part of range). Trudy KamchatNIRO 3:109–121Google Scholar
  91. Volobuev VV, Chereshnev IA, Shestakov AV (2005) Osobennosti bioilogii i dinamiki stada prokhodnykh i zhilykh lososevidnykh ryb rek Tauyskoy guby Okhotskogo moray (Biology and dynamic of anadromous and resident stocks of salmonid fishes from rivers of Tauy Bay, Sea of Okhotsk). Vestnik SVNTS DVO RAN, vol 2. Magadan, pp 25–47Google Scholar
  92. Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391PubMedGoogle Scholar
  93. Wares JP, Hughes AR, Grosberg RK (2005) Mechanisms that drive evolutionary change: insights from species introductions and invasions. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution,and biogeography. Sinauer Associates, Sunderland, MA, pp 229–257 Google Scholar
  94. Wegner KM, Reusch TBH, Kalbe M (2003) Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J Evol Biol 16:224–232PubMedCrossRefGoogle Scholar
  95. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  96. Wenink PW, Groen AF, Roelke-Parker ME, Prins HHT (1998) African buffalo maintain high genetic diversity in the major histocompatibility complex in spite of historically known population bottlenecks. Mol Ecol 7:1315–1322PubMedCrossRefGoogle Scholar
  97. Whitney KD, Gabler CA (2008) Rapid evolution in introduced species, „invasive traits” and recipient communities: challenges for predicting invasive potential. Diversity Distrib 14:569–580CrossRefGoogle Scholar
  98. Withler FC (1982) Transplanting Pacific salmon. CanTech Rep Fish Aquat Sci 1079:1–27Google Scholar
  99. Zelennikov OV, Kuznetsova NV (2003) K voprosu o plodovitosti gorbushi, introdutsirovannoy v bassein Belogo moray (To the question about fecundity of pink salmon introduced in the White Sea basin). In: Tezisy dokladov IV nauchnoy sessii morskoy biologicheskoy stantsii Sankt-Peterburgskogo Universiteta (Abstracts of the IV scientific session of MBS SPbGU). MBS SPbGU, Sankt-Peterburg, 2008, p 28Google Scholar
  100. Zhivotovsky LA, Afanas’ev KI, Rubtsova GA (1987) Selective processes at allozyme loci in pink salmon Oncorhynchus gorbuscha (Walbaum). Genetika (Moscow) 23(10):1876–1883Google Scholar
  101. Zubchenko AV, Veselov AE, Kluzhin SM (2004) Gorbusha (Oncorhynchus gorbuscha): problemy akklimatizatsii na Evropeyskom Severe Rossii (Pink salmon (Oncorhynchus gorbuscha): problems of acclimatization in the European North of Russia). Pholium, Petrozavodsk MurmanskGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Vavilov Institute of General Genetics of RASMoscowRussia
  2. 2.Vavilov Institute of General Genetics of RASMoscowRussia

Personalised recommendations