Advertisement

Evolutionary Ecology

, Volume 26, Issue 2, pp 265–290 | Cite as

Polymorphism in a common Atlantic reef coral (Montastraea cavernosa) and its long-term evolutionary implications

  • Ann F. Budd
  • Flavia L. D. Nunes
  • Ernesto Weil
  • John M. Pandolfi
Original Paper

Abstract

Recent advances in morphometrics and genetics have led to the discovery of numerous cryptic species in coral reef ecosystems. A prime example is the Montastraea annularis scleractinian coral species complex, in which morphological, genetic, and reproductive data concur on species boundaries, allowing evaluation of long-term patterns of speciation and evolutionary innovation. Here we test for cryptic species in the Atlantic species, Montastraea cavernosa, long recognized as polymorphic. Our modern samples consist of 94 colonies collected at four locations (Belize, Panamá, Puerto Rico in the Caribbean; São Tomé in the Eastern Atlantic). Our fossil samples consist of 78 colonies from the Plio-Pleistocene of Costa Rica and Panamá. Landmark morphometric data were collected on thin sections of 46 modern and 78 fossil colonies. Mahalanobis distances between colonies were calculated using Bookstein coordinates, revealing two modern and four fossil morphotypes. The remaining 48 of the 94 modern colonies were assigned to morphotype using discriminant analysis of calical measurements. Cross-tabulation and multiple comparisons tests show no significant morphological differences among geographic locations or water depths. Patterns of variation within and among fossil morphotypes are similar to modern morphotypes. DNA sequence data were collected for two polymorphic nuclear loci -tub1 and β-tub2) on all 94 modern colonies. Haplotype networks show that both genes consist of two clades, but morphotypes are not associated with genetic clades. Genotype frequencies and two-locus genotype assignments indicate genetic exchange across clades, and ϕst values show no genetic differentiation between morphotypes at different locations. Taken together, our morphological and genetic results do not provide evidence for cryptic species in M. cavernosa, but indicate instead that this species has an unusually high degree of polymorphism over a wide geographic area and persisting for >25 million years (myr).

Keywords

Cryptic species Reef coral Caribbean Geometric morphometrics β-tubulin Neogene 

Notes

Acknowledgments

We thank Myra Laird (University of Iowa) and Jonathan Lee (University of California, San Diego) for photography and measuring specimens, and Matthew Wortel (University of Iowa Geoscience Petrographic Facilities) for preparing thin sections. Diving assistance in Belize was provided by Claudia and Dan Miller. David Anderson assisted with specimen collection and morphological measurements in Puerto Rico. Nancy Knowlton and Richard Norris provided helpful comments and discussions. This research was supported by a grant from the US National Science Foundation Grant [DEB-0343208 to AFB], a doctoral fellowship from the Center of Marine Biodiversity and Conservation [to FN], the John Dove Isaacs Chair in Natural Philosophy [to N. Knowlton], the Department of Marine Sciences, University of Puerto Rico [to EW], and both the Australian Research Council Centre of Excellence for Coral Reef Studies and the Smithsonian Institution’s Marine Science Network grants [to JMP].

Supplementary material

10682_2010_9460_MOESM1_ESM.doc (431 kb)
Supplementary material 1 (DOC 431 kb)
10682_2010_9460_MOESM2_ESM.jpg (1.5 mb)
Figure S1 (a) Phylogenetic trees based on β-tub1 inferred by neighbor-joining (left) and maximum parsimony (right) methods implemented in MEGA. Bootstrap support >0.50 isreported (branches with <0.50 support have been collapsed). Haplotype names are precededby their Clade assignment (A or B). (b) Phylogenetic trees based on β-tub2 inferred byneighbor-joining (left) and maximum parsimony (right) methods implemented in MEGA.Bootstrap support >0.50 is reported (branches with <0.50 support have 995 been collapsed). Haplotype names are preceded by their Clade assignment (C or D)(JPG 1927 kb)

References

  1. Acosta A, Zea S (1997) Sexual reproduction of the reef coral Montastrea cavernosa (Scleractinia: Faviidae) in the Santa Marta area, Caribbean coast of Colombia. Mar Biol 128:141–148CrossRefGoogle Scholar
  2. Barroso R, Klautau M, Sole-Cava AM, Paiva PC (2010) Eurythoe complanata (Polychaeta: Amphinomidae), the ‘cosmopolitan’ fireworm, consists of at least three cryptic species. Mar Biol 157:69–80CrossRefGoogle Scholar
  3. Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390PubMedCrossRefGoogle Scholar
  4. Bookstein FL (1991) Morphometric tools for landmark data. Cambridge University Press, Cambridge 435 pGoogle Scholar
  5. Brazeau DA, Gleason DF, Morgan ME (1998) Self-fertilization in brooding hermaphroditic Caribbean corals: evidence from molecular markers. J Exp Mar Biol Ecol 231:225–238CrossRefGoogle Scholar
  6. Budd AF (1991) Neogene Paleontology in the Northern Dominican Republic. 11. The Family Faviidae (Anthozoa: Scleractinia). Part I. Bull AmPaleontol 101(338):5–83, pls. 1–29Google Scholar
  7. Budd AF (1993) Variation within and among morphospecies of Montastraea. Courier Forschungs-institut Senckenberg 164:241–254Google Scholar
  8. Budd AF, Johnson KG (1999) Origination preceding extinction during Late Cenozoic turnover of Caribbean reefs. Paleobiology 25:188–200Google Scholar
  9. Budd AF, Klaus JS (2001) The origin and early evolution of the Montastraea “annularis” species complex (Anthozoa: Scleractinia). J Paleontol 75:527–545CrossRefGoogle Scholar
  10. Budd AF, Klaus JS (2008) Early evolution of the Montastraea “annularis” species complex (Anthozoa: Scleractinia): Evidence from the Mio-Pliocene of the Dominican Republic. In: Nehm RH, Budd AF (eds) Evolutionary stasis and change in the Dominican Republic Neogene. Springer, New York, pp 85–124CrossRefGoogle Scholar
  11. Budd AF, Pandolfi JM (2004) Overlapping species boundaries and hybridization within the Montastraea “annularis” reef coral complex in the Pleistocene of the Bahama Islands. Paleobiology 30:396–425CrossRefGoogle Scholar
  12. Budd AF, Pandolfi JM (2010) Evolutionary novelty is concentrated at the edge of species distributions. Science 328:1558–1561PubMedCrossRefGoogle Scholar
  13. Budd AF, Stemann TA, Stewart RH (1992) Eocene Caribbean reef corals: a unique fauna from the Gatuncillo Formation of Panama. J Paleontol 66:570–594Google Scholar
  14. Budd AF, Stemann TA, Johnson KG (1994) Stratigraphic distributions of genera and species of Neogene to Recent Caribbean reef corals. J Paleontol 68:951–977Google Scholar
  15. Budd AF, Johnson KG, Stemann TA, Tompkins BH (1999) Pliocene to Pleistocene reef coral assemblages in the Limon Group of Costa Rica. In: Collins LS, Coates AG (eds), A Paleobiotic Survey of the Caribbean Faunas from the Neogene of the Isthmus of Panama. Bulletins of American Paleontology, Special Volume 357:119–158Google Scholar
  16. Calvo M, Templado J, Oliverio M, Machordom A (2009) Hidden Mediterranean biodiversity: molecular evidence for a cryptic species complex within the reef building vermetid gastropod Dendropoma petraeum (Mollusca: Caenogastropoda). Biol J Linn Soc 96:898–912CrossRefGoogle Scholar
  17. Carpenter KE and 38 others (2008) One-third of reef building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563Google Scholar
  18. Chen IP, Tang CY, Chiou CY et al (2009) Comparative analyses of coding and noncoding DNA regions indicate that Acropora (Anthozoa: Scleractina) possesses a similar evolutionary tempo of nuclear vs. mitochondrial genomes as in plants. Mar Biotechnol 11:141–152PubMedCrossRefGoogle Scholar
  19. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  20. Coates AG, McNeill DF, Aubry M-P, Berggren WA, Collins LS (2005) An introduction to the geology of the Bocas del Toro Archipelago, Panama. Caribb J Sci 41:374–391Google Scholar
  21. Collins LS, Coates AG (eds) (1999) A Paleobiotic Survey of Caribbean Faunas from the Neogene of the Isthmus of Panama. Bull Am Paleontol 357:351Google Scholar
  22. Diekmannn OE, Bak RPM, Stam WT, Olsen JL (2001) Molecular genetic evidence for probable reticulate speciation in the coral genus Madracis from a Caribbean fringing reef slope. Mar Biol 139:221–233CrossRefGoogle Scholar
  23. Duncan PM (1863) On the fossil corals of the West Indian Islands. Part 1. Q J Geol Soc Lond 20:406–458, pls 13–16Google Scholar
  24. Eldredge N, Gould SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in paleobiology. Freeman Cooper, San Francisco, pp 82–115Google Scholar
  25. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1Google Scholar
  26. Eytan RI, Hayes M, Arbour-Reily P, Miller M, Hellberg ME (2009) Nuclear sequences reveal mid-range isolation of an imperilled deep-water coral population. Mol Ecol 18:2375–2389PubMedCrossRefGoogle Scholar
  27. Flot J, Magalon H, Cruard C, Couloux A, Tillier S (2008) Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. Comptes Rendus Biol 331:239–247CrossRefGoogle Scholar
  28. Forsman ZH, Guzman HM, Chen CA, Fox GE, Wellington GM (2005) An ITS region phylogeny of Siderastrea (Cnidaria:Anthozoa): is S. glynni endangered or introduced? Coral Reefs 24:343–347CrossRefGoogle Scholar
  29. Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ (2009) Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol 9:45PubMedCrossRefGoogle Scholar
  30. Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N (2004a) Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution 58:324–337PubMedGoogle Scholar
  31. Fukami H, Budd AF, Paulay G, Solé-Cava A, Chen CA, Iwao K, Knowlton N (2004b) Conventional Taxonomy Obscures Deep Divergence between Pacific and Atlantic Corals. Nature 427:832–835PubMedCrossRefGoogle Scholar
  32. Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang Y-Y, Chen C, Dai C-F, Iwao K, Sheppard C, Knowlton N (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS One 3(9):e3222(1–9)CrossRefGoogle Scholar
  33. Gillespie JH (2004) Population genetics: a concise guide, 2nd edn. The Johns Hopkins University Press, Baltimore 232 ppGoogle Scholar
  34. Goodbody-Gringley G, Vollmer SV, Woollacott RM, Giribet G (2010) Limited gene flow in the brooding coral Favia fragum (Esper, 1797). Marine Biology. doi: 10.1007/s00227-00010-01521-00226
  35. Goreau TF (1959) The ecology of Jamaican coral reefs. I. Species composition and zonation. Ecology 40:67–90CrossRefGoogle Scholar
  36. Goreau TF, Wells JW (1967) The shallow-water Scleractinia of Jamaica: revised list of species and their vertical distribution range. Bull Mar Sci 17:442–453Google Scholar
  37. Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24PubMedCrossRefGoogle Scholar
  38. Hunt G (2007) The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc Natl Acad Sci 104:18404–18408PubMedCrossRefGoogle Scholar
  39. Jablonski D (2007) Scale and hierarchy in macroevolution. Palaeontology 50:87–109CrossRefGoogle Scholar
  40. Jackson JBC, Cheetham AH (1990) Evolutionary significance of morphospecies; a test with cheilostome Bryozoa. Science 248:579–583PubMedCrossRefGoogle Scholar
  41. Jackson JBC, Cheetham AH (1999) Tempo and mode of speciation in the sea. Trends Ecol Evol 14:72–77PubMedCrossRefGoogle Scholar
  42. Johnson KG (2001) Middle Miocene recovery of Caribbean reef corals: new data from the Tamana Formation of Trinidad. J Paleontol 75:513–526CrossRefGoogle Scholar
  43. Johnson KG (2007) Reef-coral diversity in the Late Oligocene Antigua Formation and temporal variation of local diversity on Caribbean Cenozoic Reefs. In: Hubmann B, Piller WE (eds) Fossil Corals and Sponges. Proceedings of the 9th International Symposium on Fossil Cnidaria and Porifera. Österr. Akad. Wiss., Schriftenr. Erdwiss. Komm. 17:471–491, 1 Tab., 5 Figs., 2 Pls., WienGoogle Scholar
  44. Johnson KG, Kirby MX (2006) The Emperador Limestone rediscovered: Early Miocene corals from the Culebra Formation, Panama. J Paleontol 80:283–293CrossRefGoogle Scholar
  45. Klaus JS, Budd AF, Heikoop JM, Fouke BW (2007) Environmental controls on corallite morphology in the reef coral Montastraea annularis. Bull Mar Sci 80:233–260Google Scholar
  46. Klaus JS, Budd AF, Johnson KG, McNeill DF (2008) Assessing community change in Miocene to Pliocene coral assemblages of the northern Dominican Republic. In: Nehm RH, Budd AF (eds) Evolutionary stasis and change in the Dominican Republic Neogene. Springer, New York, pp 193–224CrossRefGoogle Scholar
  47. Klautau M, Russo CAM, Lazoski C et al (1999) Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution 53:1414–1422CrossRefGoogle Scholar
  48. Knowlton N (1993) Sibling species in the sea. Ann Rev Ecol Syst 24:189–216CrossRefGoogle Scholar
  49. Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologica 420:73–90CrossRefGoogle Scholar
  50. Knowlton N, Budd AF (2001) Recognizing coral species past and present. In: Jackson JBC, Lidgard S, McKinney FK (eds) Evolutionary patterns: growth, form, and tempo in the fossil record. Univ. Chicago Press, Chicago, pp 97–119Google Scholar
  51. Knowlton N, Jackson JBC (1994) New taxonomy and niche partitioning on coral reefs: jack of all trades or master of some? Trends Ecol Evol 9:7–9PubMedCrossRefGoogle Scholar
  52. Knolwton N, Weil E, Weigt LA, Guzman HM (1992) Sibling species in Montastraea annularis, coral bleaching, and the coral climate record. Science 255:330–333CrossRefGoogle Scholar
  53. Laborel J (1969) Madréporaires et Hydrocoralliaires récifaux des côtes brésiliiennes. Annales del Institute Océanographique 47:171–229, 8 plsGoogle Scholar
  54. Laborel J (1974) West African reefs corals: an hypothesis on their origin. Proceedings of the 2nd International Coral Reef Symposium 1: 425–443Google Scholar
  55. Lasker HR (1976) Intraspecific variability of zooplankton feeding in the hermatypic coral Montastraea cavernosa. In: Mackie GW (ed) Coelenterate ecology and behavoir. Plenum Press, New York, pp 101–109Google Scholar
  56. Lasker HR (1979) Light dependent activity patterns among reef corals: Montastraea cavernosa. Biol Bull 156:196–211CrossRefGoogle Scholar
  57. Lasker HR (1980) Sediment rejection by reef corals: the roles of behavior and morphology in Montastraea cavernosa (Linnaeus). J Exp Mar Biol Ecol 47:77–87CrossRefGoogle Scholar
  58. Lasker HR (1981) Phenotypic variation in the coral Montastraea cavernosa and its effects on colony energetics. Biol Bull 160:292–302CrossRefGoogle Scholar
  59. Lee T, Foighil DO (2005) Placing the Floridian marine genetic disjunction into a regional evolutionary context using the scorched mussel, Brachidontes exustus, species complex. Evolution 59:2139–2158PubMedGoogle Scholar
  60. Levitan DR, Fukami H, Jara J, Kline D, McGovern TM, McGhee KE, Swanson CA, Knowlton N (2004) Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58:308–323PubMedGoogle Scholar
  61. Lin HC, Sanchez-Ortiz C, Hastings PA (2009) Colour variation is incongruent with mitochondrial lineages: cryptic speciation and subsequent diversification in a Gulf of California reef fish (Teleostei: Blennioidei). Mol Ecol 18:2476–2488PubMedCrossRefGoogle Scholar
  62. Linneaus C (1767) Madrepora. Systema Naturae, Holmiae, Editio Duodecima, Reformata, t.1, pt.2, pp 1272–1282Google Scholar
  63. Mathews LM (2006) Cryptic biodiversity and phylogeographical patterns in a snapping shrimp species complex. Mol Ecol 15:4049–4063PubMedCrossRefGoogle Scholar
  64. McNeill DF, Coates AG, Budd AF, Borne PF (2000) Integrated paleontologic and paleomagnetic stratigraphy of the upper Neogene deposits around Limon, Costa Rica: a coastal emergence record of the Central American Isthmus. Geol Soc Am Bull 112:963–981CrossRefGoogle Scholar
  65. Miller KJ, Benzie JAH (1997) No clear genetic distinction between morphological species within the coral genus Platygyra. Bull Mar Sci 61:907–917Google Scholar
  66. Muss A, Robertson DR, Stepien CA, Wirtz P, Bowen BW (2001) Phylogeography of Ophioblennius: the role of ocean currents and geography in reef fish evolution. Evolution 55:561–572PubMedCrossRefGoogle Scholar
  67. Nunes F (2009) Biodiversity and connectivity in peripheral populations of corals of the South and Eastern Atlantic. PhD Dissertation, University of California, San Diego, 142 ppGoogle Scholar
  68. Nunes F, Fukami H, Vollmer SV, Norris RD, Knowlton N (2008) Re-evaluation of the systematics of the endemic corals of Brazil by molecular data. Coral Reefs 27:423–432CrossRefGoogle Scholar
  69. Nunes F, Norris RD, Knowlton N (2009) Implications of isolation and low genetic diversity in peripheral populations of an amphi-Atlantic coral. Mol Ecol 18:4283–4297PubMedCrossRefGoogle Scholar
  70. Pandolfi JM, Budd AF (2008) Morphology and ecological zonation of Caribbean reef corals: the Montastraea ‘annularis’ species complex. Mar Ecol Prog Ser 369:89–102CrossRefGoogle Scholar
  71. Rodriguez-Lanetty M, Hoegh-Guldberg O (2002) The phylogeography and connectivity of the latitudinally widespread scleractinian coral Plesiastrea versipora in the Western Pacific. Mol Ecol 11:1177–1189PubMedCrossRefGoogle Scholar
  72. Ruiz H (2004). Morphometric examination of corallite and colony variability in the Caribbean coral Montastraea cavernosa (Linnaeus 1766). Ms.C Thesis (Advisor Dr. Ernesto Weil). Department of Marine Sciences, University of Puerto Rico Mayaguez, 79 ppGoogle Scholar
  73. Schultz HA, Budd AF (2008) Neogene evolution of the reef coral species complex Montastraea “cavernosa”. In: Nehm RH, Budd AF (eds) Evolutionary stasis and change in the Dominican Republic Neogene. Springer, New York, pp 147–170CrossRefGoogle Scholar
  74. Severance EG, Karl SA (2006) Contrasting population genetic structures of sympatric, mass-spawning Caribbean corals. Mar Biol 150:57–68CrossRefGoogle Scholar
  75. Shearer TL, Van Oppen MJH, Romano SL, Worheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487PubMedCrossRefGoogle Scholar
  76. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792PubMedCrossRefGoogle Scholar
  77. Stephens M, Scheet P (2005) Accounting for decay of linkage disequilibrium in haplotype inference and missing-data imputation. Am J Hum Genet 76:449–462PubMedCrossRefGoogle Scholar
  78. Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989PubMedCrossRefGoogle Scholar
  79. Sterrer W (ed) (1986) Marine fauna and flora of Bermuda. Wiley, New York 774 ppGoogle Scholar
  80. Szmant AM (1986) Reproductive ecology of Caribbean Reef Corals. Coral Reefs 5:43–53CrossRefGoogle Scholar
  81. Szmant AM (1991) Sexual reproduction by the Caribbean reef corals Montastraea annularis and M. cavernosa. Mar Ecol Prog Ser 74:13–25CrossRefGoogle Scholar
  82. Szmant AM, Weil E, Miller MW, Colon DE (1996) Hybridization in the species complex of Montastraea annularis. Mar Biol 129:561–572CrossRefGoogle Scholar
  83. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  84. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  85. Todd PA (2008) Morphological plasticity in scleractinian corals. Biol Rev 83:315–337PubMedCrossRefGoogle Scholar
  86. Vaughan TW (1919) Fossil corals from Central America, Cuba, and Porto Rico with an account of the American Tertiary, Pleistocene, and recent coral reefs. U.S. National Museum Bulletin 103:189–524, pls. 68–152Google Scholar
  87. Vollmer SV, Palumbi SR (2004) Testing the utility of internally transcribed spacer sequences in coral phylogenetics. Mol Ecol 13:2763–2772PubMedCrossRefGoogle Scholar
  88. Vollmer SV, Palumbi SR (2007) Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: Implications for the recovery of endangered reefs. J Hered 98:40–50PubMedCrossRefGoogle Scholar
  89. Wei NV, Wallace CC, Dai CF, Pillay RM, Chen CA (2006) Analyses of the Ribosomal Internal Transcribed Spacers (ITS) and the 5.8S Gene Indicate that Extremely High rDNA Heterogeneity is a Unique Feature in the Scleractinian Cora Genus Acropora (Scleractinia;Acroporidae). Zool Stud 45(3):404–418Google Scholar
  90. Weil E, Knowlton N (1994) A multi-character analysis of the Caribbean coral Montastraea annularis (Ellis & Solander, 1786) and its two sibling species, M. faveolata (Ellis & Solander, 1786), and M. franksi (Gregory, 1895). Bull Mar Sci 54(3):151–175Google Scholar
  91. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373PubMedCrossRefGoogle Scholar
  92. Zelditch ML, Swiderski DL, Sheets HD, Finks WL (2004) Geometric morphometrics for biologists: a primer. Elsevier, Amsterdam, 416 pGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ann F. Budd
    • 1
  • Flavia L. D. Nunes
    • 2
    • 3
  • Ernesto Weil
    • 4
  • John M. Pandolfi
    • 5
  1. 1.Department of GeoscienceUniversity of IowaIowa CityUSA
  2. 2.Center for Marine Biodiversity and ConservationScripps Institute of OceanographyLa JollaUSA
  3. 3.Observatoire des Sciences de l’Univers de RennesUniversité de Rennes 1RennesFrance
  4. 4.Department of Marine SciencesUniversity of Puerto RicoMayagüezUSA
  5. 5.Centre for Marine Science, School of Biological Sciences, and Australian Research Council Centre of Excellence for Coral Reef StudiesThe University of QueenslandBrisbaneAustralia

Personalised recommendations