Evolutionary Ecology

, Volume 25, Issue 3, pp 605–622 | Cite as

Parasite diversity, patterns of MHC II variation and olfactory based mate choice in diverging three-spined stickleback ecotypes

  • Christophe Eizaguirre
  • Tobias L. Lenz
  • Ralf D. Sommerfeld
  • Chris Harrod
  • Martin Kalbe
  • Manfred Milinski
Article

Abstract

Ecological speciation has been the subject of intense research in evolutionary biology but the genetic basis of the actual mechanism driving reproductive isolation has rarely been identified. The extreme polymorphism of the major histocompatibility complex (MHC), probably maintained by parasite-mediated selection, has been proposed as a potential driver of population divergence. We performed an integrative field and experimental study using three-spined stickleback river and lake ecotypes. We characterized their parasite load and variation at MHC class II loci. Fish from lakes and rivers harbor contrasting parasite communities and populations possess different MHC allele pools that could be the result of a combined action of genetic drift and parasite-mediated selection. We show that individual MHC class II diversity varies among populations and is lower in river ecotypes. Our results suggest the action of homogenizing selection within habitat type and diverging selection between habitat types. Finally, reproductive isolation was suggested by experimental evidence: in a flow channel design females preferred assortatively the odor of their sympatric male. This demonstrates the role of olfactory cues in maintaining reproductive isolation between diverging fish ecotypes.

Keywords

Habitat heterogeneity Parasite community Major histocompatibility complex Local adaptations Mate choice Parasite diversity Speciation Three-spined stickleback 

Supplementary material

10682_2010_9424_MOESM1_ESM.doc (332 kb)
Supplementary material 1 (DOC 331 kb)

References

  1. Aeschlimann PB, Häberli MA, Reusch TBH, Boehm T, Milinski M (2003) Female sticklebacks Gasterosteus aculeatus use self-reference to optimize MHC allele number during mate selection. Behav Ecol Sociobiol 54:119–126Google Scholar
  2. Alcaide M, Edwards SV, Negro JJ, Serrano D, Tella JL (2008) Extensive polymorphism and geographical variation at a positively selected MHC class IIB gene of the lesser kestrel (Falco naumanni). Mol Ecol 17:2652–2665PubMedCrossRefGoogle Scholar
  3. Apanius V, Penn D, Slev PR, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224PubMedGoogle Scholar
  4. Babik W, Pabijan M, Radwan J (2008) Contrasting patterns of variation in MHC loci in the Alpine newt. Mol Ecol 17:2339–2355PubMedCrossRefGoogle Scholar
  5. Bakker TCM (1993) Positive genetic correlation between female preference and preferred male ornament in sticklebacks. Nature 363:255–257CrossRefGoogle Scholar
  6. Berner D, Adams DC, Grandchamp AC, Hendry AP (2008) Natural selection drives patterns of lake/stream divergence in stickleback foraging morphology. J Evol Biol 21:1653–1665PubMedCrossRefGoogle Scholar
  7. Berner D, Grandchamp AC, Hendry AP (2009) Variable progress toward ecological speciation in parapatry: stickleback across eight lake-stream transitions. Evolution 63:1740–1753PubMedCrossRefGoogle Scholar
  8. Blais J, Rico C, van Oosterhout C, Cable J, Turner GF, Bernatchez L (2007) MHC adaptive divergence between closely related and sympatric african cichlids. PLoS ONE 2:e734PubMedCrossRefGoogle Scholar
  9. Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: models and empirical evidence. Annu Rev Ecol Evol Syst 38:459–487CrossRefGoogle Scholar
  10. Bolnick DI, Snowberg LK, Patenia C, Stutz WE, Ingram T, Lau OL (2009) Phenotype-dependent native habitat preference facilitates divergence between parapatric lake and stream stickleback. Evolution 63:2004–2016PubMedCrossRefGoogle Scholar
  11. Bonneaud C, Perez-Tris J, Federici P, Chastel O, Sorci G (2006) Major histocompatibilty alleles associated with local resistance to malaria in a passerine. Evolution 60:383–389PubMedGoogle Scholar
  12. Boughman JW (2001) Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 411:944–948PubMedCrossRefGoogle Scholar
  13. Boughman JW, Rundle HD, Schluter D (2005) Parallel evolution of sexual isolation in sticklebacks. Evolution 59:361–373PubMedGoogle Scholar
  14. Buchmann K, Lindenstrom T (2002) Interactions between monogenean parasites and their fish hosts. Int J Parasitol 32:309–319Google Scholar
  15. Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. PRIMER-E, PlymouthGoogle Scholar
  16. Collins CA, Olstad K, Sterud E et al (2007) Isolation of a novel fish thymidylate kinase gene, upregulated in Atlantic salmon (Salmo salar L.) following infection with the monogenean parasite Gyrodactylus salaris. Fish Shellfish Immunol 23:793–807Google Scholar
  17. Coulson TN, Pemberton JM, Albon SD, Beaumont M, Marshall TC, Slate J, Guinness FE, Clutton-Brock TH (1998) Microsatellites reveal heterosis in red deer. Proc R Soc Lond Ser B Biol Sci 265:489–495CrossRefGoogle Scholar
  18. Coyne JA, Orr HA (2004) In speciation. Sinauer, SunderlandGoogle Scholar
  19. De Boer RJ, Perelson AS (1993) How diverse should the immune system be? Proc R Soc Lond B Biol Sci 252:171–175CrossRefGoogle Scholar
  20. Dieckmann U, Doebeli M, Metz J, Tautz D (2004) Adaptive speciation. In: Dieckmann U, Doebeli M, Metz J, Tautz D (eds) Adaptive speciation. Cambridge Studies in Adaptive Dynamics, vol 3Google Scholar
  21. Eizaguirre C, Lenz TL (in press) Dynamics and consequences of parasite-mediated local adaptation: a future for MHC studies? J Fish BiolGoogle Scholar
  22. Eizaguirre C, Lenz TL, Traulsen A, Milinski M (2009a) Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecol Lett 12:5–12PubMedCrossRefGoogle Scholar
  23. Eizaguirre C, Yeates SE, Lenz TL, Kalbe M, Milinski M (2009b) MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Mol Ecol 18:3316–3329PubMedCrossRefGoogle Scholar
  24. Ekblom R, Saether SA, Jacobsson PAR, Fiske P, Sahlman T, Grahn M, Kalas JA, Hoglund J (2007) Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Mol Ecol 16:1439–1451PubMedCrossRefGoogle Scholar
  25. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  26. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  27. Frazer BA, Neff BD (2010) Parasite mediated homogenizing selection at the MHC in guppies. Genetica (in press)Google Scholar
  28. Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, PrincetonGoogle Scholar
  29. Germain RN (1994) Mhc-dependent antigen-processing and peptide presentation—providing ligands for T-lymphocyte activation. Cell 76:287–299PubMedCrossRefGoogle Scholar
  30. Gibson G (2005) Evolution: the synthesis and evolution of a supermodel. Science 307:1890–1891PubMedCrossRefGoogle Scholar
  31. Grant BR, Grant PR (1982) Niche shifts and competition in Darwin’s finches: Geospiza conirostris and congeners. Evolution 36:637–657CrossRefGoogle Scholar
  32. Halmetoja A, Valtonen ET, Koskenniemi E (2000) Perch (Perca fluviatilis L.) parasites reflect ecosystem conditions: a comparison of a natural lake and two acidic reservoirs in Finland. Int J Parasit 30:1437–1444CrossRefGoogle Scholar
  33. Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387PubMedCrossRefGoogle Scholar
  34. Harrod C, Mallela J, Kahilainen KK (2010) Phenotype-environment correlations in a putative whitefish adaptive radiation. J Anim Ecol doi: 10.1111/j.1365-2656.2010.01702.x
  35. Hendry AP (2009) Ecological speciation! Or the lack thereof? Can J Fish Aquat Sci 66:1383–1398CrossRefGoogle Scholar
  36. Huber SK, De Leon LF, Hendry AP, Bermingham E, Podos J (2007) Reproductive isolation of sympatric morphs in a population of Darwin’s finches. Proc R Soc B Biol Sci 274:1709–1714CrossRefGoogle Scholar
  37. Janeway CA, Travers P, Walport M, Sclomchik MJ (2005) Immunobiology: the immune system in health and disease. Garland Science Publishing, New YorkGoogle Scholar
  38. Jiggins CD, Naisbit RE, Coe RL, Mallet J (2001) Reproductive isolation caused by colour pattern mimicry. Nature 411:302–305PubMedCrossRefGoogle Scholar
  39. Kalbe M, Wegner KM, Reusch TBH (2002) Dispersion patterns of parasites in 0+ year three-spined sticklebacks: a cross population comparison. J Fish Biol 60:1529–1542CrossRefGoogle Scholar
  40. Kalbe M, Eizaguirre C, Dankert I, Reusch TBH, Sommerfeld RD, Wegner KM, Milinski M (2009) Lifetime reproductive success is maximized with optimal MHC diversity. Proc R Soc Lond Ser B Biol Sci 276:925–934CrossRefGoogle Scholar
  41. Kitano JUN, Mori S, Peichel CL (2007) Phenotypic divergence and reproductive isolation between sympatric forms of Japanese threespine sticklebacks. Biol J Linnean Soc 91:671–685CrossRefGoogle Scholar
  42. Kolluru GR, Grether GF, South SH et al (2006) The effects of carotenoid and food availability on resistance to a naturally occurring parasite (Gyrodactylus turnbulli) in guppies (Poecilia reticulata). Biol J Linn Soc 89:301–309Google Scholar
  43. Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aguirre-Macedo L, Boch CA, Dobson AP, Dunham EJ, Fredensborg BL, Huspeni TC, Lorda J, Mababa L, Mancini FT, Mora AB, Pickering M, Talhouk NL, Torchin ME, Lafferty KD (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518PubMedCrossRefGoogle Scholar
  44. Lenz TL, Becker S (2008) Simple approach to reduce PCR artefact formation leads to reliable genotyping of MHC and other highly polymorphic loci—implications for evolutionary analysis. Gene 427:17–123CrossRefGoogle Scholar
  45. Lenz TL, Eizaguirre C, Becker S, Reusch TBH (2009) RSCA genotyping of MHC for high-throughput evolutionary studies in the model organism three-spined stickleback Gasterosteus aculeatus. BMC Evol Biol 9:57PubMedCrossRefGoogle Scholar
  46. Lindenstrom T, Secombes CJ, Buchmann K (2004) Expression of immune response genes in rainbow trout skin induced by Gyrodactylus derjavini infections. Vet Immunol Immunopathol 97:137–148Google Scholar
  47. Losos JB, Jackman TR, Larson A, Queiroz Kd, Rodriguez-Schettino L (1998) Contingency and determinisn in replicated adaptive radiations of island lizards. Science 279:2115–2118Google Scholar
  48. Maccoll ADC (2009) Parasites may contribute to ‘magic trait’ evolution in the adaptive radiation of three-spined sticklebacks, Gasterosteus aculeatus (Gasterosteiformes: Gasterosteidae). Biol J Linnean Soc 96:425–433CrossRefGoogle Scholar
  49. Marchinko KB, Schluter D (2007) Parallel evolution by correlated response: lateral plate reduction in threespine stickleback. Evolution 61:1084–1090PubMedCrossRefGoogle Scholar
  50. Maynard Smith J (1966) Sympatric speciation. Am Nat 100:637–650CrossRefGoogle Scholar
  51. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  52. McKinnon JS, Mori S, Blackman BK, David L, Kingsley DM, Jamieson L, Chou J, Schluter D (2004) Evidence for ecology’s role in speciation. Nature 429:294–298PubMedCrossRefGoogle Scholar
  53. McLennan DA, McPhail JD (1990) Experimental investigations of the evolutionary significance of sexually dimorphic nuptial coloration in Gasterosteus-Aculeatus (L)—the relationship between male color and female behavior. Can J Zool Revue Canadienne de Zoologie 68:482–492CrossRefGoogle Scholar
  54. McPhail JD (1994) Speciation and the evolution of reproductive isolation in the sticklebacks (Gasterosteus) of south western British Columbia. In: Bell MA, Foster SA (eds) The evolutionary biology of the threespine stickleback. Oxford University Press, Oxford, pp 399–437Google Scholar
  55. Milinski M (2006) The major histocompatibility complex, sexual selection, and mate choice. Annu Rev Ecol Evol Syst 37:159–186CrossRefGoogle Scholar
  56. Milinski M, Bakker TCM (1990) Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344:330–333CrossRefGoogle Scholar
  57. Milinski M, Griffiths S, Wegner KM, Reusch TBH, Haas-Assenbaum A, Boehm T (2005) Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc Natl Acad Sci U S A 102:4414–4418PubMedCrossRefGoogle Scholar
  58. Milinski M, Griffiths SnW, Reusch TBH, Boehm T (2010) Costly major histocompatibility complex signals produced only by reproductively active males, but not females, must be validated by a ‘maleness signal’ in three-spined sticklebacks. Proc R Soc B Biol Sci 227:391–398CrossRefGoogle Scholar
  59. Nei M, Gu X, Sitnikova T (1997) Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc Natl Acad Sci U S A 94:7799–7806PubMedCrossRefGoogle Scholar
  60. Nowak MA, Tarczyhornoch K, Austyn JM (1992) The optimal number of major histocompatibility complex-molecules in an individual. Proc Natl Acad Sci U S A 89:10896–10899PubMedCrossRefGoogle Scholar
  61. Podos J (2001) Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature 409:185PubMedCrossRefGoogle Scholar
  62. Poulin R (1996) How many parasite species are there: are we close to answers? Int J Parasit 26:1127–1129CrossRefGoogle Scholar
  63. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  64. Raeymaekers JAM, Huyse T, Maelfait H, Hellemans B, Volckaert FAM (2008) Community structure, population structure and topographical specialisation of Gyrodactylus (Monogenea) ectoparasites living on sympatric stickleback species. Folia Biol 55:187–196Google Scholar
  65. Rafferty NE, Boughman JW (2006) Olfactory mate recognition in a sympatric species pair of three-spined sticklebacks. Behav Ecol 17:965–970CrossRefGoogle Scholar
  66. Rauch G, Kalbe M, Reusch TBH (2006) Relative importance of MHC and genetic background for parasite load in a field experiment. Evol Ecol Res 8:373–386Google Scholar
  67. Raymond M, Rousset F (1995) Genepop (version-1.2)—population-genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  68. Reusch TBH, Haberli MA, Aeschlimann PB, Milinski M (2001a) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300–302PubMedCrossRefGoogle Scholar
  69. Reusch TBH, Wegner KM, Kalbe M (2001b) Rapid genetic divergence in postglacial populations of threespine stickleback: the role of habitat type, drainage and geographical proximity. Mol Ecol 10:2435–2445PubMedCrossRefGoogle Scholar
  70. Reusch TBH, Schaschl H, Wegner KM (2004) Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the three-spined stickleback. Immunogenetics 56:427–437PubMedCrossRefGoogle Scholar
  71. Richardson DS, Komdeur J, Burke T, von Schantz T (2005) MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proc R Soc Lond Ser B Biol Sci 272:759–767CrossRefGoogle Scholar
  72. Sato A, Figueroa F, O’hUigin C, Steck N, Klein J (1998) Cloning of major histocompatibility complex Mhc genes from threespine stickleback, Gasterosteus aculeatus. Mol Mar Biol Biotechnol V7:221–231Google Scholar
  73. Scharsack JP, Kalbe M, Harrod C, Rauch G (2007) Habitat-specific adaptation of immune responses of stickleback (Gasterosteus aculeatus) lake and river ecotypes. Proc R Soc Lond B Biol Sci 274:1523–1532CrossRefGoogle Scholar
  74. Schluter D (1996) Ecological speciation in postglacial fishes. Philos Trans R Soc Lond B Biol Sci 351:807–814Google Scholar
  75. Schluter D, Rambaut A (1996) Ecological speciation in postglacial fishes. Philos Trans R Soc B Biol Sci 351:807–814CrossRefGoogle Scholar
  76. Schwensow N, Eberle M, Sommer S (2008) Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proc R Soc Lond Ser B Biol Sci 275:555–564CrossRefGoogle Scholar
  77. Seehausen O, Terai Y, Magalhaes IS, Carleton KL, Mrosso HDJ, Miyagi R, van der Sluijs I, Schneider MV, Maan ME, Tachida H, Imai H, Okada N (2008) Speciation through sensory drive in cichlid fish. Nature 455:U620–U623CrossRefGoogle Scholar
  78. Sommerfeld RD, Boehm T, Milinski M (2008) Desynchronising male and female reproductive seasonality: dynamics of male MHC-independent olfactory attractiveness in sticklebacks. Ethol Ecol Evol 20:325–336Google Scholar
  79. Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B Biol Sci 277:979–988CrossRefGoogle Scholar
  80. Summers K, McKeon S, Sellars J, Keusenkothen M, Morris J, Gloeckner D, Pressley C, Price B, Snow H (2003) Parasitic exploitation as an engine of diversity. Biol Rev 78:639–675PubMedCrossRefGoogle Scholar
  81. Thompson JN (1994) In the coevolutionary process. University of Chicago Press, ChicagoGoogle Scholar
  82. van Doorn GS, Edelaar P, Weissing FJ (2009) On the origin of species by natural and sexual selection. Science 326:1704–1707PubMedCrossRefGoogle Scholar
  83. Vines T, Schluter D (2006) Strong assortative mating between allopatric sticklebacks as a by-product of adaptation to different environments. Proc R Soc Lond Ser B Biol Sci 273:911–916CrossRefGoogle Scholar
  84. Ward AJW, Webster MM, Hart PJB (2007) Social recognition in wild fish populations. Proc R Soc B Biol Sci 274:1071–1077CrossRefGoogle Scholar
  85. Wegner KM, Reusch TBH, Kalbe M (2003) Multiple parasites are driving major histocompatibility comple polymorphism in the wild. J Evol Biol 16:224–232PubMedCrossRefGoogle Scholar
  86. Woelfing B, Traulsen A, Milinski M, Boehm T (2009) Does intra-individual MHC diversity keep a golden mean? Phil Trans R Soc B Biol Sci 364:117–128CrossRefGoogle Scholar
  87. Yamazaki K, Boyse EA, Mike V, Thaler HT, Mathieson BJ, Abbott J, Boyse J, Zayas ZA, Thomas L (1976) Control of mating preferences in mice by genes in the major histocompatibility complex. J Exp Med 144:1324–1335PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Christophe Eizaguirre
    • 1
    • 2
  • Tobias L. Lenz
    • 2
  • Ralf D. Sommerfeld
    • 2
  • Chris Harrod
    • 3
  • Martin Kalbe
    • 2
  • Manfred Milinski
    • 2
  1. 1.Evolutionary Ecology of Marine FishesLeibniz Institute for Marine Sciences (IFM-GEOMAR)KielGermany
  2. 2.Department of Evolutionary EcologyMax Planck Institute for Evolutionary BiologyPloenGermany
  3. 3.School of Biological SciencesQueen’s University BelfastBelfastUK

Personalised recommendations