Evolutionary Ecology

, Volume 25, Issue 2, pp 259–276 | Cite as

Differential host defense against multiple parasites in ants

  • Christoph von Beeren
  • Munetoshi Maruyama
  • Rosli Hashim
  • Volker Witte
Original Paper

Abstract

Host–parasite interactions are ideal systems for the study of coevolutionary processes. Although infections with multiple parasite species are presumably common in nature, most studies focus on the interactions of a single host and a single parasite. To the best of our knowledge, we present here the first study on the dependency of parasite virulence and host resistance in a multiple parasite system. We evaluated whether the strength of host defense depends on the potential fitness cost of parasites in a system of two Southeast Asian army ant hosts and five parasitic staphylinid beetle species. The potential fitness costs of the parasites were evaluated by their predation behavior on host larvae in isolation experiments. The host defense was assessed by the ants’ aggressiveness towards parasitic beetle species in behavioral studies. We found clear differences among the beetle species in both host–parasite interactions. Particular beetle species attacked and killed the host larvae, while others did not. Importantly, the ants’ aggressiveness was significantly elevated against predatory beetle species, while non-predatory beetle species received almost no aggression. As a consequence of this defensive behavior, less costly parasites are more likely to achieve high levels of integration in the ant society. We conclude that the selection pressure on the host to evolve counter-defenses is higher for costly parasites and, thus, a hierarchical host defense strategy has evolved that depends on the parasites’ impact.

Keywords

Parasitism Coevolution Myrmecophiles Fitness impact Staphylinidae 

Supplementary material

10682_2010_9420_MOESM1_ESM.doc (156 kb)
Supplementary material 1 (DOC 156 kb)

References

  1. Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B 266:1419–1426CrossRefGoogle Scholar
  2. Akre RD, Rettenmeyer CW (1966) Behavior of Staphylinidae associated with army ants (Formicidae: Ecitoninae). J Kans Entomol Soc 39(4):745–782Google Scholar
  3. Alizon S, Hurford A, Mideo N et al (2009) Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. J Evol Biol 22(2):245–259CrossRefPubMedGoogle Scholar
  4. Allander K, Schmid-Hempel P (2000) Immune defence reaction in bumble-bee workers after a previous challenge and parasitic coinfection. Funct Ecol 14(6):711–717CrossRefGoogle Scholar
  5. Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396CrossRefPubMedGoogle Scholar
  6. Bandilla M, Valtonen ET, Suomalainen LR et al (2006) A link between ectoparasite infection and susceptibility to bacterial disease in rainbow trout. Int J Parasitol 36(9):987–991CrossRefPubMedGoogle Scholar
  7. Barbero F, Thomas JA, Bonelli S et al (2009) Queen ants make distinctive sounds that are mimicked by a butterfly social parasite. Science 323:782–785CrossRefPubMedGoogle Scholar
  8. Barker DE, Cone DK, Burt MDB (2002) Trichodina murmanica (Ciliophora) and Gyrodactylus pleuronecti (Monogenea) parasitizing hatchery-reared winter flounder, Pseudopleuronectes americanus (Walbaum): effects on host growth and assessment of parasite interaction. J Fish Dis 25(2):81–89CrossRefGoogle Scholar
  9. Bell AS, De Roode JC, Sim D et al (2006) Within-host competition in genetically diverse malaria infections: parasite virulence and competitive success. Evolution 60(7):1358–1371PubMedGoogle Scholar
  10. Boomsma JJ, Schmid-Hempel P, Hughes WHO (2005) Life histories and parasite pressure across the major groups of social insects. In: Fellowes MDE, Holloway GJ, Rolff J (eds) Insect evolutionary ecology: proceedings of the royal entomological society’s 22nd symposium. CABI, Wallingford, pp 139–176Google Scholar
  11. Bordes F, Morand S (2009) Coevolution between multiple helminth infestations and basal immune investment in mammals: cumulative effects of polyparasitism? Parasitol Res 106:33–37CrossRefPubMedGoogle Scholar
  12. Bremermann HJ, Pickering J (1983) A game-theoretical model of parasite virulence. J Theor Biol 100(3):411–426CrossRefPubMedGoogle Scholar
  13. Bronstein JL (2001) The exploitation of mutualisms. Ecol Lett 4(3):277–287CrossRefGoogle Scholar
  14. Brown SP, Hochberg ME, Grenfell BT (2002) Does multiple infection select for raised virulence? Trends Microbiol 10(9):401–405CrossRefPubMedGoogle Scholar
  15. Clayton DH, Lee PL, Tompkins DM et al (1999) Reciprocal natural selection on host–parasite phenotypes. Am Nat 154(3):261–270CrossRefPubMedGoogle Scholar
  16. Combes C (2005) The art of being a parasite. The University of Chicago Press, ChicagoGoogle Scholar
  17. Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond B 205:489–511CrossRefPubMedGoogle Scholar
  18. de Meeûs T, Renaud F (2002) Parasites within the new phylogeny of eukaryotes. Trends Parasitol 18:6Google Scholar
  19. Deboutteville CD (1948) Recherches sur les Collemboles term-itophiles et myrmecophiles (ecologie, ethologie, systematique). Arch Zool Exptl Et Gen 85(5):261–425Google Scholar
  20. Delves PJ, Martin SJ, Burton DR, Roitt IM (2006) Roitt’s essential immunology. Blackwell publishing, OxfordGoogle Scholar
  21. Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154CrossRefGoogle Scholar
  22. Disney RHL, Lizon à l’Allemand S, von Beeren C et al (2009) A new genus and new species of scuttle flies (Diptera: Phoridae) from colonies of ants (Hymenoptera: Formicidae) in Malaysia. Sociobiology 53(1):1–12Google Scholar
  23. Frank SA (1996) Models of parasite virulence. Q Rev Biol 71(1):37–78CrossRefPubMedGoogle Scholar
  24. Gotwald WH Jr (1995) Army ants: the biology of social predation. Cornell University Press, IthacaGoogle Scholar
  25. Hart BL (1990) Behavioral adaptations to pathogens and parasites: five strategies. Neurosci Biobehav Rev 14:273–294CrossRefPubMedGoogle Scholar
  26. Hechinger RF, Lafferty KD, Mancini FT et al (2009) How large is the hand in the puppet? Ecological and evolutionary factors affecting body mass of 15 trematode parasitic castrators in their snail host. Evol Ecol 23(5):651–667CrossRefGoogle Scholar
  27. Hefetz A (2007) The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae)—interplay of colony odor uniformity and odor idiosyncrasy. A review. Myrmecol News 10:59–68Google Scholar
  28. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeGoogle Scholar
  29. Howard RW, Blomquist GJ (2005) Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393CrossRefPubMedGoogle Scholar
  30. Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 23(12):672–677CrossRefPubMedGoogle Scholar
  31. Kistner DH (1975) Myrmecophilous Staphylinidae associated with Leptogenys Roger (Coleoptera; Hymenoptera, Formicidae). Sociobiology 1:1–19Google Scholar
  32. Kistner DH (1979) Social and evolutionary significance of social insect symbionts. In: Hermann HR (ed) Social insects. Academic Press, New York, pp 339–413Google Scholar
  33. Kistner DH (1989) New genera and species of Aleocharinae associated with ants of the genus Leptogenys and their relationships (Coleoptera: Staphylinidae; Hymenoptera, Formicidae). Sociobiology 15:299–323Google Scholar
  34. Kistner DH, Witte V, Maschwitz U (2003) A new species of Trachydonia (Coleoptera: Staphylinidae, Aleocharinae) from Malaysia with some notes on its behavior as a guest of Leptogenys (Hymenoptera: Formicidae). Sociobiology 42:381–389Google Scholar
  35. Kistner DH, von Beeren C, Witte V (2008) Redescription of the generitype of Trachydonia and a new host record for Maschwitzia ulrichi (Coleoptera: Staphylinidae). Sociobiology 52(3):497–524Google Scholar
  36. Kronauer DJC (2009) Recent advances in army ant biology (Hymenoptera: Formicidae). Myrmecol News 12:51–65Google Scholar
  37. Lenoir A, D’Ettorre P, Errard C et al (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599CrossRefPubMedGoogle Scholar
  38. Levine JM, HilleRisLambers J (2009) The importance of niches for the maintenance of species diversity. Nature 461(7261):254–257CrossRefPubMedGoogle Scholar
  39. Martens K, Schön I (2000) Parasites, predators and the Red Queen. Trends Ecol Evol 15(10):392–393CrossRefPubMedGoogle Scholar
  40. Maruyama M, von Beeren C, Rosli H (in press a) Myrmecophilous aleocharine rove beetles (Coleoptera: Staphylinidae) associated with Leptogenys Roger, 1861 (Hymenoptera: Formicidae) I. Review of three genera associated with L. distinguenda (Emery, 1887) and L. mutabilis (Smith,1861). ZookeysGoogle Scholar
  41. Maruyama M, von Beeren C, Witte V (in press b) Aleocharine rove beetles (Coleoptera: Staphylinidae) associated with Leptogenys Roger, 1861 (Hymenoptera: Formicidae) II. Two new genera and two new species associated with L. borneensis Wheeler, 1919. ZookeysGoogle Scholar
  42. Maschwitz U, Steghaus-Kovac S (1991) Individualismus versus Kooperation: gegensätzliche Jagd- und Rekrutierungsstrategien bei tropischen Ponerinen (Hymenoptera: Formicidae). Naturwissenschaften 78:103–113CrossRefGoogle Scholar
  43. May RM, Nowak MA (1995) Coinfection and the evolution of parasite virulence. Proc R Soc Lond B 261(1361):209–215CrossRefGoogle Scholar
  44. Møller AP, Rósza L (2005) Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts. Oecologia 142:169–176CrossRefPubMedGoogle Scholar
  45. Moore J (2002) Parasites and the behavior of animals. Oxford University Press, New YorkGoogle Scholar
  46. Paulian R (1948) Observations sur les Coléoptères commensaux d’Anomma nigricans en Côte d”Ivoire. Ann Sci Nat Zool 10:79–102Google Scholar
  47. Perlman SJ, Jaenike J (2001) Competitive interactions and persistence of two nematode species that parasitize Drosophila recens. Ecol Lett 4(6):577–584CrossRefGoogle Scholar
  48. Petney TN, Andrews RH (1998) Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol 28(3):377–393CrossRefPubMedGoogle Scholar
  49. Pierce NE, Braby MF, Heath A et al (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771CrossRefPubMedGoogle Scholar
  50. Read AF, Taylor LH (2001) The ecology of genetically diverse infections. Science 292(5519):1099–1102CrossRefPubMedGoogle Scholar
  51. Rumbaugh KP, Diggle SP, Watters CM et al (2009) Quorum sensing and the social evolution of bacterial virulence. Curr Biol 19(4):341–345CrossRefPubMedGoogle Scholar
  52. Rutrecht ST, Brown MJF (2008) The life-history impact and implications of multiple parasites for bumble bee queens. Int J Parasitol 38:799–808CrossRefPubMedGoogle Scholar
  53. Sachs J, Mueller UG, Wilcox TP et al (2003) The evolution of cooperation. Q Rev Biol 79:136–160Google Scholar
  54. Schjorring S, Koella JC (2003) Sub-lethal effects of pathogens can lead to the evolution of lower virulence in multiple infections. Proc R Soc Lond B 270(1511):189–193CrossRefGoogle Scholar
  55. Schmid-Hempel P (1988) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
  56. Seevers CH (1965) The systematics, evolution and zoogeography of staphylinid beetles associated with army ants (Coleoptera, Staphylinidae). Fieldiana Zool 47(2):139–351Google Scholar
  57. Steghaus-Kovac S (1994) Wanderjäger im Regenwald-Lebensstrategien im Vergleich: Ökologie und Verhalten südostasiatischer Ameisenarten der Gattung Leptogenys (Hymenoptera: Formicidae: Ponerinae). Dissertation, Johann Wolfgang Goethe Universität, FrankfurtGoogle Scholar
  58. Thayer MK (2005) 11. Staphylinoidea. 11.7. Staphylinidae Latreille, 1802. In: Kristensen NP, Beutel RG (eds) Handbook of zoology vol IV, part 2. Arthropoda: Insecta. De Gruyter, Berlin, pp 296–344Google Scholar
  59. Thomas JA, Wardlaw JC (1992) The capacity of a Myrmica ant nest to support a predacious species of Maculinea butterfly. Oecologia 91:101–109Google Scholar
  60. Thompson JN (1994) The coevolutionary process. University of Chicago Press, ChicagoGoogle Scholar
  61. Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, ChicagoGoogle Scholar
  62. Turner PE, Chao L (1999) Prisoner’s dilemma in an RNA virus. Nature 398(6726):441–443CrossRefPubMedGoogle Scholar
  63. Van Baalen M, Sabelis MW (1995) The dynamics of multiple infection and the evolution of virulence. Am Nat 146(6):881–910CrossRefGoogle Scholar
  64. Wasmann E (1886) Über die Lebensweise einiger Ameisengäste. I Dtsch Entomol Z 30:49–66Google Scholar
  65. Wasmann E (1895) Die Ameisen-und Termitengäste von Brasilien. I. Theil. Mit einem Anhange von Dr. August Forel. Verh K K Zool Bot Ges Wien 45:137–179Google Scholar
  66. Witte V (2001) Organisation und Steuerung des Treiberameisenverhaltens bei südostasiatischen Ponerinen der Gattung Leptogenys. Dissertation, Johann Wolfgang Goethe Universität, FrankfurtGoogle Scholar
  67. Witte V, Maschwitz U (2002) Coordination of raiding and emigration in the ponerine army ant Leptogenys distinguenda (Hymenoptera: Formicidae: Ponerinae): a signal analysis. J Insect Behav 15:195–217CrossRefGoogle Scholar
  68. Witte V, Leingärtner A, Sabaß L et al (2008) Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim Behav 76:1477–1486CrossRefGoogle Scholar
  69. Witte V, Foitzik S, Hashim R et al (2009) Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda. J Chem Ecol 35:355–367CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Christoph von Beeren
    • 1
  • Munetoshi Maruyama
    • 2
  • Rosli Hashim
    • 3
  • Volker Witte
    • 1
  1. 1.Department Biologie IILudwig-Maximilians Universität MünchenPlaneggGermany
  2. 2.The Kyushu University MuseumFukuokaJapan
  3. 3.Institute of Biological Sciences, Faculty of Science BuildingUniversity MalayaKuala LumpurMalaysia

Personalised recommendations