Evolutionary Ecology

, Volume 25, Issue 2, pp 525–530 | Cite as

Thermal energy and the rate of genetic evolution in marine fishes

  • Shane D. WrightEmail author
  • Howard A. Ross
  • D. Jeanette Keeling
  • Paul McBride
  • Len N. Gillman
Original Paper


Slower genetic evolution in microbial thermophiles has been attributed to internal mutation control mechanisms in very high temperatures, whereas the tempo of plant microevolution has been positively correlated to ambient thermal conditions. Here, using a global dataset of 136 teleost fish species, contrasting warm and cool water species, and controlling for any differences between species in mutation control mechanisms, we found mitochondrial genetic evolution was 1.61 times faster in warm water species. These results suggest that temperature-mediated reduction in mutation rate is only important in extreme thermal regimes.


Depth Latitude Microevolution Substitution rate 



The study was funded by Nga Pae O Te Maramatanga, Maori Centre of Research Excellence, under the direction of Michael Walker and Linda Smith. S. W. holds the Michael Horton Lectureship in Biogeography at the University of Auckland.

Supplementary material

10682_2010_9416_MOESM1_ESM.doc (169 kb)
Supplementary material 1 (DOC 169 kb)


  1. Adelman R, Saul RL, Ames BN (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Nat Acad Sci USA 85:2706–2708CrossRefPubMedGoogle Scholar
  2. Allen A, Gillooly J, Savage V, Brown J (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Nat Acad Sci USA 103:9130–9135CrossRefPubMedGoogle Scholar
  3. Bromham L (2002) Molecular clocks in reptiles: life history influences rate of molecular evolution. Mol Biol Evol 19:302–309PubMedGoogle Scholar
  4. Collins MA, Bailey DM, Ruxton GD, Priede IG (2005) Trends in body size across an environmental gradient: a differential response in scavenging and non-scavenging demersal deep-sea fish. Proc Royal Soc B 272:2051–2057CrossRefGoogle Scholar
  5. Davies T, Savolainen V, Chase M, Moat J, Barraclough T (2004) Environmental energy and evolutionary rates in flowering plants. Proc Royal Soc Lond B 271:2195–2200CrossRefGoogle Scholar
  6. Drake JW (2009) Avoiding dangerous missense: thermophiles display especially low mutation rates. PLOS Genet 5:1–6CrossRefGoogle Scholar
  7. Drummond A, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A (2009) Geneious v4.7. Available from
  8. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376CrossRefPubMedGoogle Scholar
  9. Gillespie JH (2000) Genetic drift in an infinite population: the pseudohitchhiking model. Genetics 155:909–919PubMedGoogle Scholar
  10. Gillman LN, Ross HA, Keeling JD, Wright SD (2009) Latitude, elevation and the tempo of molecular evolution in mammals. Proc Royal Soc B 276:3353–3359CrossRefGoogle Scholar
  11. Gillman LN, Keeling DJ, Gardner RC, Wright SD (2010) Faster evolution of highly conserved DNA in tropical plants. J Evol Biol 23:1327–1330CrossRefPubMedGoogle Scholar
  12. Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251CrossRefPubMedGoogle Scholar
  13. Gillooly JF, Allen AP, West GB, Brown JH (2005) The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc Nat Acad Sci USA 102:140–145CrossRefPubMedGoogle Scholar
  14. Lanfear R, Thomas JA, Welch JJ, Brey T, Bromham L (2007) Metabolic rate does not calibrate the molecular clock. Proc Nat Acad Sci USA 104:15388–15393CrossRefPubMedGoogle Scholar
  15. Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Nat Acad Sci USA 90:4087–4091CrossRefPubMedGoogle Scholar
  16. Moranta J, Palmer M, Massuti E, Stefanescu C, Morales-Nin B (2004) Body fish size tendencies within and among species in the deep-sea of the western Mediterranean. Scientia Marina 68:141–152CrossRefGoogle Scholar
  17. Ohta T (1992) The nearly neutral theory of molecular evolution. Ann Rev Ecol Syst 23:263–286CrossRefGoogle Scholar
  18. Rohde K (1992) Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514–527CrossRefGoogle Scholar
  19. Sarich VM, Wilson AC (1967) Immunological time scale for hominid evolution. Science 158:1200–1203CrossRefPubMedGoogle Scholar
  20. Swami M (2009) Turning up the heat. Nat Rev Genet 10:512–513CrossRefGoogle Scholar
  21. Swofford D (2002) PAUP*: phylogenetic analysis using parsimony (and other methods) 4.0 beta. Sinauer Associates: CD-ROM, Sunderland, MAGoogle Scholar
  22. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  23. Woolfit M, Bromham L (2005) Population size and molecular evolution on islands. Proc Royal Soc Lond B 272:2277–2282CrossRefGoogle Scholar
  24. Wright S, Keeling J, Gillman L (2006) The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc Nat Acad Sci USA 103:7718–7722CrossRefPubMedGoogle Scholar
  25. Wright SD, Gillman LN, Ross HA, Keeling DJ (in press) Energy and the tempo of evolution in amphibians. Global Ecol BiogeogrGoogle Scholar
  26. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Shane D. Wright
    • 1
    Email author
  • Howard A. Ross
    • 1
  • D. Jeanette Keeling
    • 1
  • Paul McBride
    • 2
  • Len N. Gillman
    • 2
  1. 1.School of Biological SciencesUniversity of AucklandAucklandNew Zealand
  2. 2.School of Applied ScienceAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations