Advertisement

Evolutionary Ecology

, Volume 25, Issue 3, pp 573–588 | Cite as

The role of gill raker number variability in adaptive radiation of coregonid fish

  • Kimmo K. KahilainenEmail author
  • Anna Siwertsson
  • Karl Ø. Gjelland
  • Rune Knudsen
  • Thomas Bøhn
  • Per-Arne Amundsen
Original Paper

Abstract

Gill raker divergence is a general pattern in adaptive radiations of postglacial fish, but few studies have addressed the adaptive significance of this morphological trait in foraging and eco-evolutionary interactions among predator and prey. Here, a set of subarctic lakes along a diversifying gradient of coregonids was used as the natural setting to explore correlations between gill raker numbers and planktivory as well as the impact of coregonid radiation on zooplankton communities. Results from 19 populations covering most of the total gill raker number gradient of the genus Coregonus, confirm that the number of gill rakers has a central role in determining the foraging ability towards zooplankton prey. Both at the individual and population levels, gill raker number was correlated with pelagic niche use and the size of utilized zooplankton prey. Furthermore, the average body size and the abundance and diversity of the zooplankton community decreased with the increasing diversity of coregonids. We argue that zooplankton feeding leads to an eco-evolutionary feedback loop that may further shape the gill raker morphology since natural selection intensifies under resource competition for depleted prey communities. Eco-evolutionary interactions may thus have a central role creating and maintaining the divergence of coregonid morphs in postglacial lakes.

Keywords

Ecological speciation Foraging trait Polymorphism Vendace Whitefish morphs 

Notes

Acknowledgments

The authors thank the Ministry of Agriculture and Forestry, Municipality of Inari, Finnish Cultural Foundation, Ella and Georg Ehrnrooth Foundation, Otto A. Malm Foundation, Emil Aaltonen Foundation, European Regional Developmental Fund (project A30205), The Norwegian Research Council (NFR 186320/V40 and 183984/S30), Norwegian Directorate for Nature Management, The County Governor of Finnmark and Pasvik Kraft AS for funding. We also acknowledge the field and laboratory work by Aikio O., Antti-Poika P., Dalsbø L., Eloranta A., Helminen M., Johannesen K.S., Johansson K., Jääskeläinen P., Kervinen J., Lien C., Marttila J., Mäenpää K., Niemistö J., Pennanen, M., Pohtila J., Salonen, M., Sáren, J., Solberg K.G., Tuomaala, A. and Vatanen S. Muddusjärvi Research Station kindly provided facilities during the field sampling. We like to thank White E. and Antti-Poika P. for line illustrations and Malinen T. for comments on manuscript.

References

  1. Amundsen P-A, Gabler HM, Staldvik FJ (1996) A new approach to graphical analysis of feeding strategy from stomach contents data—modification of Costello (1990) method. J Fish Biol 48:607–614Google Scholar
  2. Amundsen P-A, Staldvik FJ, Reshetnikov YS, Kashulin N, Lukin A, Bøhn T, Sandlund OT, Popova OA (1999) Invasion of vendace Coregonus albula in a subarctic watercourse. Biol Conserv 88:405–413CrossRefGoogle Scholar
  3. Amundsen P-A, Bøhn T, Våga GH (2004a) Gill raker morphology and feeding ecology of two sympatric morphs of European whitefish (Coregonus lavaretus). Ann Zool Fenn 41:291–300Google Scholar
  4. Amundsen P-A, Knudsen R, Klemetsen A, Kristoffersen R (2004b) Resource competition and interactive segregation between sympatric whitefish morphs. Ann Zool Fenn 41:301–307Google Scholar
  5. Amundsen P-A, Siwertsson A, Primicerio R, Bøhn T (2009) Long-term responses of zooplankton to invasion by a planktivorous fish in a subarctic watercourse. Freshw Biol 54:24–34CrossRefGoogle Scholar
  6. Araújo MS, Guimarães PR, Svanbäck R, Pinheiro A, Guimarães P, dos Reis SF, Bolnick DI (2008) Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology 89:1981–1993PubMedCrossRefGoogle Scholar
  7. Bernatchez L (2004) Ecological theory of adaptive radiation: empirical assessment from Coregonine fishes (Salmoniformes). In: Hendry AP, Stearns SC (eds) Evolution illuminated: salmon and their relatives. Oxford University Press, Oxford, pp 175–207Google Scholar
  8. Bernatchez L, Chouinard A, Lu G (1999) Integrating molecular genetics and ecology in studies of adaptive radiation: whitefish, Coregonus sp., as a case study. Biol J Linn Soc 68:173–194CrossRefGoogle Scholar
  9. Bøhn T, Amundsen P-A (1998) Effects of invading vendace (Coregonus albula L.) on species composition and body size in two zooplankton communities of the Pasvik River System, northern Norway. J Plankton Res 20:243–256CrossRefGoogle Scholar
  10. Bøhn T, Amundsen P-A (2001) The competitive edge of an invading specialist. Ecology 82:2150–2163Google Scholar
  11. Bøhn T, Amundsen P-A, Sparrow A (2008) Competitive exclusion after invasion? Biol Inv 10:359–368CrossRefGoogle Scholar
  12. Bolnick DI, Lau OL (2008) Predictable patterns of disruptive selection in stickleback in postglacial lakes. Am Nat 172:1–11PubMedCrossRefGoogle Scholar
  13. Brooks JL, Dodson SI (1965) Predation, body size, and composition of plankton. Science 150:28–35PubMedCrossRefGoogle Scholar
  14. Budy P, Haddix T, Scheidervin R (2005) Zooplankton size selection relative to gill raker spacing in rainbow trout. Trans Am Fish Soc 134:1228–1235CrossRefGoogle Scholar
  15. Clabaut C, Bunje PME, Salzburger W, Meyer A (2007) Geometric morphometric analyses provide evidence for the adaptive character of the Tanganyikan cichlid fish radiations. Evolution 61:560–578PubMedCrossRefGoogle Scholar
  16. Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400:354–357PubMedCrossRefGoogle Scholar
  17. Dieckman U, Doebeli M, Metz JAJ, Tautz D (eds) (2004) Adaptive speciation. Cambridge University Press, CambridgeGoogle Scholar
  18. Friedland KD, Ahrenholz DW, Smith JW, Manning M, Ryan J (2006) Sieving functional morphology of the gill raker feeding apparatus of Atlantic menhaden. J Exp Zool 305A:974–985CrossRefGoogle Scholar
  19. Gibson RN (1988) Development, morphometry and particle retention capability of gill rakers in the herring, Clupea harengus L. J Fish Biol 32:949–962CrossRefGoogle Scholar
  20. Gjelland KØ, Bøhn T, Amundsen P-A (2007) Is coexistence mediated by microhabitat segregation?—an in-depth exploration of a fish invasion. J Fish Biol 71(Suppl. D):196–209CrossRefGoogle Scholar
  21. Gjelland KØ, Bøhn T, Horne JK, Jensvoll I, Knudsen FR, Amundsen P-A (2009) Planktivore vertical migration and shoaling under a subarctic light regime. Can J Fish Aquat Sci 66:525–539CrossRefGoogle Scholar
  22. Grant PR, Grant BR (2008) How and why species multiply? The radiation of Darwin’s Finches. Princeton University Press, New JerseyGoogle Scholar
  23. Hairston NG Jr, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127CrossRefGoogle Scholar
  24. Harrod C, Mallela J, Kahilainen KK (2010) Phenotype-environment correlations and character displacement in a putative fish radiation. J Anim Ecol (in press). doi: 10.1111/j.1365-2656.2010.01702.x
  25. Helland IP, Harrod C, Freyhof J, Mehner T (2008) Co-existence of a pair of pelagic planktivorous coregonid fishes. Evol Ecol Res 10:373–390Google Scholar
  26. Hudson AG, Vonlanthen P, Müller R, Seehausen O (2007) Review: the geography of speciation and adaptive radiation of coregonines. Arch Hydrob Spec Iss Adv Limnol 60:111–146Google Scholar
  27. Janssen J (1980) Alewives (Alosa pseudoharengus) and ciscoes (Coregonus artedii) as selective and non-selective planktivores. In: Kerfoot WC (ed) Evolution and ecology of zooplankton communities. University Press of New England, New Hampshire, pp 580–586Google Scholar
  28. Jensen H, Kahilainen KK, Amundsen P-A, Gjelland KØ, Tuomaala A, Malinen T, Bøhn T (2008) Predation by brown trout (Salmo trutta) along a diversifying prey community gradient. Can J Fish Aquat Sci 65:1831–1841CrossRefGoogle Scholar
  29. Jurvelius J, Marjomäki TJ (2008) Night, day, sunrise, sunset: do fish under snow and ice recognize the difference? Freshw Biol 53:2287–2294CrossRefGoogle Scholar
  30. Kahilainen K, Østbye K (2006) Morphological differentiation and resource polymorphism in three sympatric whitefish Coregonus lavaretus (L.) forms in a subarctic lake. J Fish Biol 68:63–79CrossRefGoogle Scholar
  31. Kahilainen K, Lehtonen H, Könönen K (2003) Consequence of habitat segregation to growth rate of two sparsely rakered whitefish (Coregonus lavaretus (L.)) forms in a subarctic lake. Ecol Freshw Fish 12:275–285CrossRefGoogle Scholar
  32. Kahilainen K, Malinen T, Tuomaala A, Lehtonen H (2004) Diel and seasonal habitat and food segregation of three sympatric (Coregonus lavaretus (L.)) forms in a subarctic lake. J Fish Biol 64:418–434CrossRefGoogle Scholar
  33. Kahilainen K, Alajärvi E, Lehtonen H (2005) Planktivory and diet-overlap of densely rakered whitefish (Coregonus lavaretus (L.)) in a subarctic lake. Ecol Freshw Fish 14:50–58CrossRefGoogle Scholar
  34. Kahilainen KK, Malinen T, Tuomaala A, Alajärvi E, Tolonen A, Lehtonen H (2007) Empirical evaluation of phenotype-environment correlation and trait utility with allopatric and sympatric whitefish (Coregonus lavaretus (L.)) populations in subarctic lakes. Biol J Linn Soc 92:561–572CrossRefGoogle Scholar
  35. Kahilainen K, Malinen T, Lehtonen H (2009) Polar light regime and piscivory govern diel vertical migrations of planktivorous fish and zooplankton in a subarctic lake. Ecol Freshw Fish 18:481–490CrossRefGoogle Scholar
  36. Kalff J (2002) Limnology. Prentice-Hall, New JerseyGoogle Scholar
  37. Klemetsen A, Elliott JM, Knudsen R, Sørensen P (2002) Evidence for genetic differences in the offspring of two sympatric morphs of Arctic charr. J Fish Biol 60:933–950CrossRefGoogle Scholar
  38. Knudsen R, Klemetsen A, Amundsen P-A, Hermansen B (2006) Incipient speciation through niche expansion: an example from the Arctic charr in a subarctic lake. Proc R Soc B 273:2291–2298PubMedCrossRefGoogle Scholar
  39. Knudsen R, Amundsen P-A, Primicerio R, Klemetsen A, Sørensen P (2007) Contrasting niche-based variation in trophic morphology within Arctic charr populations. Evol Ecol Res 9:1005–1021Google Scholar
  40. Lampert W, Sommer U (2007) Limnoecology, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  41. Langeland A, Nøst T (1995) Gill raker structure and selective predation on zooplankton by particulate feeding fish. J Fish Biol 47:719–732CrossRefGoogle Scholar
  42. Lehtonen H, Niemelä E (1998) Growth and population structure of whitefish (Coregonus lavaretus (L.)) in mountain lakes of northern Finland. Arch Hydrobiol Spec Iss Adv Limnol 49:81–95Google Scholar
  43. Lindsey CC (1981) Stock’s are chameleons: plasticity in gill rakers of Coregonid fishes. Can J Fish Aquat Sci 38:1497–1506CrossRefGoogle Scholar
  44. Losos JB, Ricklefs RE (2009) Adaptation and diversification on islands. Nature 457:830–836PubMedCrossRefGoogle Scholar
  45. Nilsson N-A, Pejler B (1973) On the relation between fish fauna and zooplankton composition in north Swedish lakes. Rep Inst Freshw Res Drott 53:51–77Google Scholar
  46. Nogueira MR, Peracchi AL, Monteiro LR (2009) Morphological correlates of bite force and diet in the skull and mandible of phyllostomid bats. Func Ecol 23:715–723CrossRefGoogle Scholar
  47. Østbye K, Bernatchez L, Næsje TF, Himberg M, Hindar K (2005) The evolutionary history of European whitefish (Coregonus lavaretus L.) as inferred from mtDNA phylogeography and gillraker numbers. Mol Ecol 14:4371–4387PubMedCrossRefGoogle Scholar
  48. Østbye K, Amundsen P-A, Bernatchez L, Klemetsen A, Knudsen R, Kristoffersen R, Næsje TF, Hindar K (2006) Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Mol Ecol 15:3983–4001PubMedCrossRefGoogle Scholar
  49. Palkovacs EP, Post DM (2008) Eco-evolutionary interactions between predators and prey: can predator-induced changes to prey communities feed back to shape predator foraging traits. Evol Ecol Res 10:699–720Google Scholar
  50. Palkovacs EP, Post DM (2009) Experimental evidence that phenotypic divergence in predators drives community divergence in prey. Ecology 90:300–305PubMedCrossRefGoogle Scholar
  51. Pfennig DW, Rice AM, Martin RA (2006) Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87:769–779PubMedCrossRefGoogle Scholar
  52. Post DM, Palkovacs EP, Schielke EG, Dodson SI (2008) Intraspecific variation in a predator affects community structure and cascading trophic interactions. Ecology 89:2019–2032PubMedCrossRefGoogle Scholar
  53. Price T (2008) Speciation in birds. Roberts and Company Publishers, ColoradoGoogle Scholar
  54. Robinson BW, Parsons KJ (2002) Changing times, spaces, and faces: tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Can J Fish Aquat Sci 59:1819–1833CrossRefGoogle Scholar
  55. Rogers SM, Bernatchez L (2007) The genetic architecture of ecological speciation and the association with signatures of selection in natural lake whitefish (Coregonus sp. Salmonidae) species pairs. Mol Biol Evol 24:1423–1438PubMedCrossRefGoogle Scholar
  56. Rueffler C, Van Dooren TJM, Leimar O, Abrams PA (2006) Disruptive selection and then what? Trends Ecol Evol 21:238–245PubMedCrossRefGoogle Scholar
  57. Salzburger W (2009) The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Mol Ecol 18:169–185PubMedCrossRefGoogle Scholar
  58. Sanderson SL, Cheer AY, Goodrich JS, Graziano JD, Callan WT (2001) Crossflow filtration in suspension-feeding fishes. Nature 412:439–441PubMedCrossRefGoogle Scholar
  59. Sandlund OT, Næsje TF, Kjellberg G (1987) The size selection of Bosmina longispina and Daphnia galeata by co-occuring cisco (Coregonus albula), whitefish (C. lavaretus) and smelt (Osmerus eperlanus). Arch Hydrobiol 110:357–363Google Scholar
  60. Schluter D (1996) Ecological speciation in postglacial fishes. Phil Trans R Soc Lond B 351:807–814CrossRefGoogle Scholar
  61. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  62. Schluter D, McPhail JD (1992) Ecological character displacement and speciation in sticklebacks. Am Nat 140:85–108PubMedCrossRefGoogle Scholar
  63. Schluter D, McPhail JD (1993) Character displacement and replicate adaptive radiation. Trends Ecol Evol 8:197–200PubMedCrossRefGoogle Scholar
  64. Seghers BH (1975) Role of gill rakers in size-selective predation by lake whitefish, Coregonus clupeaformis (Mitchill). Verh Int Verein Limnol 19:2401–2405Google Scholar
  65. Skúlason S, Snorrason S, Jónsson B (1999) Sympatric morphs, populations and speciation in freshwater fish with emphasis on arctic charr. In: Magurran AE, May RM (eds) Evolution of biological diversity. Oxford University Press, Oxford, pp 70–92Google Scholar
  66. Smith JC, Sanderson SL (2008) Intra-oral flow patterns and speeds in a suspension-feeding fish with gill rakers removed versus intact. Biol Bull 215:309–318PubMedCrossRefGoogle Scholar
  67. Snowberg LK, Bolnick DI (2008) Assortative mating by diet in a phenotypically unimodal but ecologically variable population of stickleback. Am Nat 172:733–739PubMedCrossRefGoogle Scholar
  68. Svärdson G (1952) The coregonid problem. IV. The significance of scales and gillrakers. Rep Inst Freshw Res Drott 33:141–166Google Scholar
  69. Svärdson G (1979) Speciation of Scandinavian Coregonus. Rep Inst Freshw Res Drott 57:1–95Google Scholar
  70. Tolonen A (1998) Application of a bioenergetics model for analysis of growth and food consumption of subarctic whitefish Coregonus lavaretus (L.) in Lake Kilpisjärvi, Finnish Lapland. Hydrobiologia 390:153–169CrossRefGoogle Scholar
  71. Webb PW (1984) Form and function in fish swimming. Sci Am 251:58–68CrossRefGoogle Scholar
  72. Werth AJ (2004) Models of hydrodynamic flow in the bowhead whale filtering apparatus. J Exp Biol 207:3569–3580PubMedCrossRefGoogle Scholar
  73. Zaret TM (1980) Predation and freshwater communities. Yale University Press, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kimmo K. Kahilainen
    • 1
    • 2
    Email author
  • Anna Siwertsson
    • 3
  • Karl Ø. Gjelland
    • 3
  • Rune Knudsen
    • 3
  • Thomas Bøhn
    • 3
    • 4
  • Per-Arne Amundsen
    • 3
  1. 1.Department of Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Kilpisjärvi Biological StationUniversity of HelsinkiKilpisjärviFinland
  3. 3.Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and EconomicsUniversity of TromsøTromsøNorway
  4. 4.GenØk – Centre for BiosafetyThe Science ParkTromsøNorway

Personalised recommendations