Evolutionary Ecology

, Volume 25, Issue 1, pp 77–89 | Cite as

Mechanism of facultative parthenogenesis in the ant Platythyrea punctata

  • Katrin KellnerEmail author
  • Jürgen Heinze
Original Paper


Thelytokous parthenogenesis, the production of diploid female offspring from unfertilized eggs, can be caused by several cytological mechanisms, which have a different impact on the genetic variation on the offspring. The ponerine ant Platythyrea punctata is widely distributed throughout the Caribbean Islands and Central America and exhibits facultative parthenogenesis. Workers in many field colonies from the Caribbean Islands have identical multilocus genotypes and are thus probably clonal, but the occurrence of males makes an ameiotic mechanism of thelytoky unlikely. To clarify the details of thelytoky in this species we compared the multilocus genotypes of mothers and their offspring in experimental colonies and analyzed the genotypes of haploid and diploid males. Additionally, we screened a large number of field colonies from thelytokous populations for the occurrence of recombination events. According to these data, automixis with central fusion and a reduced recombination rate is the most likely mechanism of thelytoky, as in the Cape honeybee and the ant Cataglyphis cursor.


Apomixis Automixis Diploid males Heterozygosity Sex determination 



We thank Jon N. Seal and two anonymous referees for critical comments on the manuscript. Jon N. Seal, Jan Oettler, Bartosz Walter, Christiane Wanke, Benjamin Barth and Simon Tragust kindly assisted ant collecting in the field. We acknowledge the following individuals and institutions for facilitating the necessary collection and export permits: Miguel A. García, Departamento de Recursos Naturales y Ambientes, Puerto Rico; Amarilis Polonia, Dirección General de Vida Silvestre y Biodiversidad, Dominican Republic; James Arlington, Ministry of Agriculture, Fisheries and Forestry, Dominica; Ian Gibbs, Ministry of Agriculture and Rural Development, Barbados; Dr Bowen Louison, Ministry of Agriculture, Grenada; Tamica Rahming, Bahamas National Trust; Wilber Sabido, Ministry of Natural Resources and the Environment, and the Belize Audubon Society; Ernest Cowan, Florida Department of Environmental Protection, and the staff at John Pennekamp, Coral Reef State Park and Curry Hammock State Park; Donna Berry at the Nature Conservancy’s Southmost Preserve, and Jimmy Paz at the Texas Audubon Society at the Sabal Palm Grove; Lucia Orantes and Jorge Ivan Restrepo Zamorano Center of Biodiversity, Pan-American School of Agriculture, Honduras. This project is supported by Deutsche Forschungsgemeinschaft (DFG, He 1623/20).


  1. Balloux F, Lehmann L, de Meeûs T (2003) The population genetics of clonal and partially clonal diploids. Genetics 164:1635–1644PubMedGoogle Scholar
  2. Baudry E, Kryger P, Allsopp M, Koeniger N, Vautrin D, Mougel F, Cornuet J-M, Solignac M (2004) Whole genome scan in thelytokous-laying workers of the Cape honeybee (Apis mellifera capensis): central fusion, reduced recombination rates and centromer mapping using half-tetrad analysis. Genetics 167:243–252CrossRefPubMedGoogle Scholar
  3. Belshaw R, Quicke DLJ (2003) The cytogenetics of thelytoky in a predominantly asexual parasitoid wasp with covert sex. Genome 46:170–173CrossRefPubMedGoogle Scholar
  4. Bourtzis K, O’Neill S (1998) Wolbachia infections and arthropod reproduction. Bioscience 48:287–293CrossRefGoogle Scholar
  5. Cagniant H (1983) La parthénogenèse thélytoque et arrhénotoque des ouvrières de la fourmi Cataglyphis cursor Fonscolombe (Hyménoptères Formicidae). Étude biométrique des ouvrières et de leurs potentialités reproductrices. Insect Soc 30:241–254CrossRefGoogle Scholar
  6. Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421–435CrossRefGoogle Scholar
  7. Cook JM, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286CrossRefGoogle Scholar
  8. Fernández-Marín H, Zimmermann JK, Wcislo WT, Rehner SA (2005) Colony foundation, nest architecture and demography of a basal fungus-growing ant, Mycocepurus smithii (Hymenoptera, Formicidae). J Nat Hist 39:1735–1743CrossRefGoogle Scholar
  9. Fournier D, Estoup A, Orivel J, Foucaud J, Jourdan H, Le Breton J, Keller L (2005) Clonal reproduction by males and females in the little fire ant. Nature 435:1230–1235CrossRefPubMedGoogle Scholar
  10. Hartmann A, Wantia J, Torres JA, Heinze J (2003) Worker policing without genetic conflicts in a clonal ant. P Natl Acad Sci USA 100:12836–12840CrossRefGoogle Scholar
  11. Hartmann A, Wantia J, Heinze J (2005) Facultative sexual reproduction in the parthenogenetic ant Platythyrea punctata. Insect Soc 52:155–162CrossRefGoogle Scholar
  12. Heinze J (2008) The demise of the standard ant. Myrmecol News 11:9–20Google Scholar
  13. Heinze J, Hölldobler B (1995) Thelytokous parthenogenesis and dominance hierarchies in the ponerine ant, Platythyrea punctata. Naturwissenschaften 82:40–41Google Scholar
  14. Himler AG, Caldera EJ, Baer B, Fernández-Marín H, Mueller UG (2009) No sex in fungus-farming ants or their crops. P Roy Soc Lond B Bio 276:2611–2616CrossRefGoogle Scholar
  15. Kellner K, Barth B, Heinze J (2010) Colony fusion causes within-colony variation in a parthenogenetic ant. Behav Ecol Sociobiol 64:737–746Google Scholar
  16. Lamb RY, Willey RB (1987) Cytological mechanisms of thelytokous parthenogenesis in insects. Genome 29:367–369Google Scholar
  17. Lattorff HMG, Moritz RFA, Fuchs S (2005) A single locus determines thelytokous parthenogenesis of laying honeybee workers (Apis mellifera capensis). Heredity 94:533–537CrossRefPubMedGoogle Scholar
  18. Lattorff HMG, Moritz RFA, Crewe RM, Solignac M (2007) Control of reproductive dominance by the thelytoky gene in honeybees. Biol Lett 3:292–295CrossRefPubMedGoogle Scholar
  19. Normark BB (2003) The evolution of alternative genetic systems in insects. Annu Rev Entomol 48:397–423CrossRefPubMedGoogle Scholar
  20. Ohkawara K, Nakayama M, Satoh A, Trindl A, Heinze J (2006) Clonal reproduction and genetic caste differences in a queen-polymorphic ant, Vollenhovia emeryi. Biol Lett 2:359–363CrossRefPubMedGoogle Scholar
  21. Oldroyd BP, Allsopp MH, Gloag RS, Lim J, Jordan LA, Beekman M (2008) Thelytokous parthenogenesis in unmated queen honeybees (Apis mellifera capensis): Central fusion and high recombination rates. Genetics 180:359–366CrossRefPubMedGoogle Scholar
  22. Pearcy M, Aron S, Doums C, Keller L (2004) Conditional use of sex and parthenogenesis for workers and queens in ants. Science 306:1780–1782CrossRefPubMedGoogle Scholar
  23. Pearcy M, Hardy O, Aron S (2006) Thelytokous parthenogenesis and its consequences on inbreeding in an ant. Heredity 96:377–382CrossRefPubMedGoogle Scholar
  24. Pearcy M, Timmermans I, Allard D, Aron S (2009) Multiple mating in the ant Cataglyphis cursor: testing sperm limitation and the diploid male load hypotheses. Insect Soc 56:94–102CrossRefGoogle Scholar
  25. Rabeling C, Lino-Neto J, Capellari SC, Dos-Santos IA, Mueller UG (2009) Thelytokous parthenogenesis in the fungus-gardening ant Mycocepurus smithii (Hymenoptera: Formicicdae). PLoS ONE 4:e6781CrossRefPubMedGoogle Scholar
  26. Sambrook J, Russell DW (2001) Preparation and analysis of eukaryotic genomic DNA. In: Sambrook J, Russell DW (eds) Molecular cloning: a laboratory manual. Harbor Laboratory Press, Cold Spring Harbor, New York, pp 23–25Google Scholar
  27. Schilder K (1999) “Safer without sex?” Thelytokous parthenogenesis and regulation of reproduction in the ant Platythyrea punctata. Dissertation, Julius-Maximilans-Universität, WürzburgGoogle Scholar
  28. Schilder K, Heinze J, Hölldobler B (1999a) Colony structure and reproduction in the thelytokous parthenogenetic ant Platythyrea punctata (F Smith) (Hymenoptera, Formicidae). Insect Soc 46:150–158CrossRefGoogle Scholar
  29. Schilder K, Heinze J, Roy G, Hölldobler B (1999b) Microsatellites reveal clonal structure of populations of the thelytokous parthenogenetic ant Platythyrea punctata (F Smith) (Hymenoptera: Formicidae). Mol Ecol 8:1497–1507CrossRefPubMedGoogle Scholar
  30. Slobodchikoff CN, Daly HV (1971) Systematic and evolutionary implications of parthenogenesis in the Hymenoptera. Am Zool 11:273–282Google Scholar
  31. Stouthamer R, Kazmer DJ (1994) Cytogenetics of microbe-associated parthenogenesis and its consequences for gene flow in Trichogramma wasps. Heredity 73:317–327CrossRefGoogle Scholar
  32. Suomalainen E, Saura A, Lokki J (1987) Cytology and evolution in parthenogenesis. CRC Press, Boca RatonGoogle Scholar
  33. Tsuji K (1988) Obligate parthenogenesis and reproductive division of labor in the Japanese queenless ant Pristomyrmex pungens. Behav Ecol Sociobiol 23:247–255CrossRefGoogle Scholar
  34. Tsuji K, Yamauchi K (1995) Production of females by parthenogenesis in the ant Cerapachys biroi. Insect Soc 42:333–336CrossRefGoogle Scholar
  35. van Wilgenburg E, Driessen G, Beukeboom LW (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Front Zool 3:1CrossRefPubMedGoogle Scholar
  36. Verma LR, Ruttner F (1983) Cytological analysis of the thelytokous parthenogenesis in the Cape honeybee (Apis mellifera capensis Escholtz). Apidologie 14:47–57CrossRefGoogle Scholar
  37. Wenseleers T, Billen J (2000) No evidence for Wolbachia-induced parthenogenesis in the social Hymenoptera. J Evolution Biol 13:277–280CrossRefGoogle Scholar
  38. Wenseleers T, Ito F, van Born S, Huybrechts R, Volckaert F, Billen J (1998) Widespread occurrence of the micro-organism Wolbachia in ants. Proc R Soc Lond B 265:1447–1452CrossRefGoogle Scholar
  39. Werren JH (1991) The paternal-sex-chromosome of Nasonia. Am Nat 137:392–402CrossRefGoogle Scholar
  40. Wheeler WM (1905) The ants of the bahamas, with a list of the known West Indian species. Bo Am Mus Nat Hist 21:79–135Google Scholar
  41. Whiting PW (1939) Sex determination and reproductive economy in Habrobracon. Genetics 24:110–111Google Scholar
  42. Wilson EO (1988) The biogeography of the West Indian ants (Hymenoptera: Formicidae). In: Liebherr JK (ed) Zoogeography of Caribbean insects. Cornell University Press, New York, pp 214–230Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Biologie IUniversity of RegensburgRegensburgGermany
  2. 2.Section of Integrative BiologyUniversity of TexasAustinUSA

Personalised recommendations